簡易檢索 / 詳目顯示

研究生: 張家誠
Chang, Chia-Cheng
論文名稱: 奈米二氧化鈦對於中樞神經系列細胞 (小鼠腦神經瘤細胞、小鼠神經微膠質細胞、小鼠星狀膠質細胞)的毒性研究
The Cytotoxic Studies of Nano-size Titanium Dioxide on Central Nervous System Series Cell (Neuro-2a, Microglia, and Astrocyte)
指導教授: 黃鈺軫
Huang, Yuh-Jeen
口試委員: 萬磊
Lei Wan
陳仁焜
Jen-Kun Chen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 151
中文關鍵詞: 奈米二氧化鈦神經退化性疾病共培養系統
外文關鍵詞: Titanium dioxide (TiO2), Neurodegenerative diseases, Co-culture system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米二氧化鈦( TiO2 NPs )廣泛的被使用在工業及生醫領域,對生物卻存在潛在的風險。動物及細胞實驗可知誘發中樞神經系統造成細胞死亡、發炎、氧化壓力等等。在本研究中,我們直接暴露TiO2 NPs (3-5 nm 和30-50 nm)於有/無經內毒素 (LPS)前處理神經系列細胞(小鼠腦神經瘤細胞(N2A)、小鼠神經微膠質細胞(BV-2)、小鼠星狀膠質細胞(ALT)),探討TiO2 NPs的神經毒性與發炎反應的直接關係。再利用transwell建立共培養及三培養系統(兩株或三株細胞共存),探討直接受TiO2 NPs微粒(5 nm)刺激的細胞(ALT或BV-2)所誘發的生物效應例如細胞死亡、氧化壓力、及細胞激素造成其他細胞(BV-2或N2A)的間接影響或傷害。
    在直接效應,我們發現奈TiO2 NPs在高濃度情況下可以對BV-2和ALT造成細胞毒性,而對於N2A細胞則不會,顯示TiO2 NPs對於兩種膠質細胞的毒性大於神經細胞。而攝食TiO2 NPs能力,我們發現BV-2>N2A>ALT,所以我們推測在大腦中主要攝食清除奈米二氧化鈦的細胞為BV-2細胞。LPS可以誘使細胞發炎或活化,尤其是對BV-2細胞,使細胞可以攝食更多TiO2 NPs導致細胞增加活性氧化物種和發炎物質甚至死亡。我們發現小粒徑的TiO2 NPs可以誘使細胞產生較多的發炎物質,所以選用小粒徑TiO2 (3-5 nm)進行後續間接效應實驗。
    間接效應實驗我們發現只有被暴露TiO2 NPs的細胞有明顯的細胞死亡,除了BV2-N2A這一組合。而在細胞攝食方面,也只有被暴露TiO2 NPs的細胞有明顯的攝食情形。我們發現當暴露TiO2 NPs和LPS時,膠質細胞會產生發炎物質和活性氧化物種,影響周圍的神經細胞和神經膠質細胞使得他們產生細胞型態改變、發炎物質、氧化壓力最後甚至使細胞死亡。
    由上述結果我們認為當TiO2 NPs進入到中樞神經系統,被膠質細胞攝食,導致細胞發炎或死亡,釋放出有害的發炎物質影響神經元,使其受損、發炎甚至死亡,如此可能導致神經退化性疾病(阿茲海默症、帕金森氏症等)的產生。


    With the development of nanotechnology, more and more nanomaterials have been produced. Titanium dioxide (TiO2) nanoparticle (NP) is one of the important nanoscale materials. Though TiO2 nanoparticles (NPs) have been widely used in industry and biomedical field, they would have some potential risk to human health. Furthermore, animal and cell experiments were found NPs can induce toxic effects against central nervous system, such as cell death, inflammation, and oxidative stress ... etc. In this study, we exposed central nervous system cells (Neuro-2a cell line (N2A), microglial cell line (BV-2), and astrocytes (ALT)) w/wo endotoxin (lipopolysaccharide (LPS)) to TiO2 NPs (5 nm and 30 nm) to investigate the direct effect of neurotoxicity of TiO2 on cells. We also established the co-culture/tri-culture systems, co-existence of two or three cell lines by transwell assay. Then, one of the cells (ALT or BV-2) were treated with TiO2 NPs to study the effects of cell-cell interaction through secreted cytokines and chemokines.
    The results show that TiO2 NPs induce CNS series cells to generate inflammatory substances, and high concentration of TiO2 NPs have more cytotoxic to ALT and BV2 than N2A. Uptake ability of TiO2 NPs were BV-2 > N2A > ALT, so we speculate that BV-2 microglia is principal cells of uptaking TiO2 NPs in the brain. LPS pre-treatment can activate cells, especially BV-2 which can ingest more nanoparticles and result in more serious damage to the cells, such as cell death, inflammation, oxidative stress... etc. TiO2 NPs in smaller size can induce CNS series cell to release more inflammatory substances. Therefore, we will use 3-5 nm TiO2 NPs to do indirect effect of subsequent experiments.
    We found that only direct contact with nanoparticles, the declined phenomenon in cell viability was observed except for BV2-N2A co-culture system. In terms of uptake of nanoparticles, the SSC value of the cells also only in contact with the nanoparticles have increased significantly. When exposed to TiO2 NPs and LPS, glia cells generate inflammatory substances and ROS, and these inflammatory substances affect other kinds of cells, such as glia cells and neuron, leading to cell morphology changed, inflammatory substances increased, oxidative stress, and even cells death.
    We believe that when TiO2 NPs passed into the central nervous system, TiO2 NPs were ingested by ALT or BV-2 cells causing cell death, oxidative stress, inflammation, and these conditions may cause damage to the central nervous system and lead to the generation of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's s disease) . This study provides important information for nano titanium dioxide effects on the central nervous system series cells, and the results can supply a reference for future animal and human experiments.

    Abstract I 摘要 II 謝誌 III Contents IV List of Tables VII List of Figures VIII Chapter 1 1 Background and Introduction 1 1.1 Nanotoxicology 1 1.2 in vitro cytotoxicity 2 1.3 Neurotoxicology 2 1.4 Objects of this study 3 1.5 References 5 Chapter 2 7 Literature review 7 2.1 Nanomaterials 7 2.2 Nano-TiO2 8 2.2.1 Physico-chemical properties 8 2.2.1.1 Chemical Structure 8 2.2.1.2 Electronic properties 12 2.2.2 Applications 13 2.3 in vivo toxicity of TiO2 16 2.3.1 in vivo 16 2.3.2 Toxicity of nano-TiO2 16 2.4 in vitro Cytotoxicity of TiO2 19 2.4.1 Three Neuro-Cell Lines of Mouse 19 2.4.2 in vitro Cytotoxicity assays 23 2.4.3 Possible mechanisms of nanomaterials effect to biological tissue 24 2.4.4.Cytotoxicity studies of TiO2 nanoparticles 29 2.5 Concept of Nanoparticles Neurotoxicity 32 2.5.1 Neuron cell and Nervous system 32 2.5.2 Neurotoxicity of Nanomaterials 33 2.5.2.1 in vivo Studies 34 2.5.2.2 in vitro studies 35 2.5.2.3 in vitro Studies of TiO2 38 2.5.3 Nanoparticles and neurodegenerative diseases possible relationships (ex: Alzheimer's disease) 40 2.6 References 45 Chapter 3 55 Materials and methods 55 3.1 Experimental flow chart and materials 55 3.2 Nanoparticles characterization 58 3.2.1 Transmission Electron Microscopy (TEM) 58 3.2.2 X-ray diffraction (XRD) 59 3.2.3 Zetasizer 60 3.2.4 Flow cytometer 62 3.2.5 Inductively coupled plasma optical emission spectrometry (ICP-OES) 63 3.3 Three kinds of nerve cell culture 64 3.3.1 Astrocyte (ALT) 64 3.3.2 Microglial cell line(BV-2) 64 3.3.3 Neuro-2a neuroblastoma cell line (N2A) 65 3.4 Single culture and co-/tri-culture 65 3.4.1 Differentiation of N2A cell 65 3.4.2 Sample treatment 66 3.4.3 Single culture system 66 3.4.4 Co-culture system 66 3.4.5 Tri-culture system 67 3.5 Biological analysis methods 69 3.5.1 Cell morphology 69 3.5.2 Alamar Blue assay 69 3.5.3 ELISA 70 3.5.4 DCFH-DA 71 3.5.5 Uptake potential 72 3.5.6 Cytometric Beads Array 72 3.5.7 Statistics 73 3.6 Reference 74 Chapter 4 75 Physicochemical properties of TiO2 nanoparticles and its cytotoxicity to nerve cells 75 4.1 Alkali-modified TiO2 nanoparticles 75 4.2 Characterization of TiO2 nanoparticles 76 4.2.1TEM 76 4.2.2 DLS (hydrodynamic size and zeta potential) 78 4.2.3 XRD 80 4.2.4 ICP-OES 80 4.3 Cytotoxic effect of TiO2 nanoparticles on three kinds of nerve cells 81 4.3.1 Cell morphology 82 4.3.2 Cell viability 86 4.3.3 Uptake potential 91 4.3.4 Intracellular ROS 99 4.3.5 Cytokines secretion 105 4.4 Summary 112 4.5 Reference 114 Chapter 5 115 The influences of TiO2 nanoparticles on Central Nervous System (CNS) series cell 115 5.1 Co-culture System 115 5.1.1 Cell viability 116 5.1.2 Uptake potential 119 5.1.3 Intracellualr ROS 121 5.1.4 Production of Cytokines 125 5.2 tri-culture System 131 5.2.1 Cell viability 131 5.2.2 Uptake potential 133 5.2.3 Intracellualr ROS 134 5.2.4 Production of Cytokines 135 5.3 BV2-ALT-N2A tri-culture system 137 5.3.1 Cell viability 138 5.3.2 Uptake potential 140 5.3.3 Intracellualr ROS 141 5.3.4 Production of Cytokines 143 5.4 Summary 145 Chapter 6 150 Conclusions 150

    Chapter 1
    1. GIA.: According to New Report by Global Industry Analysts, Inc. . 2012.01.20 [cited 2012 11.23].
    2. Oberdörster GM, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H. and and A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group.: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2005, 2(8):1-35.
    3. Wolinsky H: A recent scare involving nanotech products reveals that the technology is not yet properly regulated. EMBO Reports 2006, 7(9): 858-861.
    4. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40(14):4346-4352.
    5. Kendall M, Holgate S: Health impact and toxicological effects of nanomaterials in the lung. Respirology 2012, 17(5):743-758.
    6. Jiang L, Wang QY, Cui WJ: Influence of Gold Nanoparticles on the Cytotoxity and Cell Growth. Prog Chem 2013, 25(10):1631-1641.
    7. Seal S, Karn B: Safety aspects of nanotechnology based activity. Saf Sci 2014, 63:217-225.
    8. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS: Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 2007, 41(23):8178-8186.
    9. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F: Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 2008, 5.
    10. Ji ZX, Jin X, George S, Xia TA, Meng HA, Wang X, Suarez E, Zhang HY, Hoek EMV, Godwin H et al: Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ Sci Technol 2010, 44(19):7309-7314.
    11. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM: Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 2008, 101(2):239-253.
    12. Xue Y, Wu J, Sun J: Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 2012, 214(2):91-98.
    13. Boyes WK, Chen R, Chen CY, Yokel RA: The neurotoxic potential of engineered nanomaterials. Neurotoxicology 2012, 33(4):902-910.
    14. Sharma HS, Sharma A: Neurotoxicity of Engineered Nanoparticles from Metals. CNS Neurol Disord-Drug Targets 2012, 11(1):65-80.
    15. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA: Alzheimer disease in the US population - Prevalence estimates using the 2000 census. Arch Neurol 2003, 60(8):1119-1122.
    Chapter 2
    1. International A: E-2456-06 Terminology for nanotechnology. 2006.
    2. Buzea C, Pacheco, II, Robbie K: Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2(4):MR17-MR71.
    3. Feng SQ, Yu DP, Zhang HZ, Bai ZG, Ding Y, Hang QL, Zou YH, Wang JJ: Growth mechanism and quantum confinement effect of silicon nanowires. Sci China Ser A-Math Phys Astron 1999, 42(12):1316-1322.
    4. Wikipedia: http://en.wikipedia.org/wiki/Titanium_dioxide.
    5. Chen X, Mao SS: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev 2007, 107(7):2891-2959.
    6. Thompson TL, Yates JT: Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 2006, 106(10):4428-4453.
    7. Diebold U: The surface science of titanium dioxide. Surf Sci Rep 2003, 48(5-8):53-229.
    8. Norotsky A JJC, Kleppa O J.: Enthalpy of transformation of a high pressure polymorph of titanium dioxide to the rutile modification. Science 1967, 158(338-389).
    9. Zhang QH, Gao L, Guo JK: Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B-Environ 2000, 26(3):207-215.
    10. Sclafani A PL, Schiavello M.: Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 1990, 94(829–832).
    11. Linsebigler AL, Lu GQ, Yates JT: PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chem Rev 1995, 95(3):735-758.
    12. Mo SD, Ching WY: ELECTRONIC AND OPTICAL-PROPERTIES OF 3 PHASES OF TITANIUM-DIOXIDE - RUTILE, ANATASE, AND BROOKITE. Phys Rev B 1995, 51(19):13023-13032.
    13. Muscat J, Swamy V, Harrison NM: First-principles calculations of the phase stability of TiO2. Phys Rev B 2002, 65(22).
    14. Carp O, Huisman CL, Reller A: Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 2004, 32(1-2):33-177.
    15. Tanaka K, Capule MFV, Hisanaga T: EFFECT OF CRYSTALLINITY OF TIO2 ON ITS PHOTOCATALYTIC ACTION. Chem Phys Lett 1991, 187(1-2):73-76.
    16. Selloni A: Crystal growth - Anatase shows its reactive side. Nat Mater 2008, 7(8):613-615.
    17. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ: Anatase TiO(2) single crystals with a large percentage of reactive facets. Nature 2008, 453(7195):638-U634.
    18. Baur WH: ATOMABSTANDE UND BINDUNGSWINKEL IM BROOKIT, TIO2. Acta Crystallographica 1961, 14(3):214-&.
    19. Cromer DT, Herrington K: THE STRUCTURES OF ANATASE AND RUTILE. J Am Chem Soc 1955, 77(18):4708-4709.
    20. Wunderlich W, Oekermann T, Miao L, Hue NT, Tanemura S, Tanemura M: Electronic properties of nano-porous TiO2- and ZnO-thin films-comparison of simulations and experiments. J Ceram Process Res 2004, 5(4):343-354.
    21. Paxton AT, Thien-Nga L: Electronic structure of reduced titanium dioxide. Phys Rev B 1998, 57(3):1579-1584.
    22. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G: Bioinorganic photochemistry: Frontiers and mechanisms. Chem Rev 2005, 105(6):2647-2694.
    23. Li GH, Chen L, Graham ME, Gray KA: A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. J Mol Catal A-Chem 2007, 275(1-2):30-35.
    24. Ceresana.: Market Study: Titanium Dioxide. 2013.
    25. Winkler J: Titanium Dioxide. 2003.
    26. Kurtoglu ME, Longenbach T, Gogotsi Y: Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. Int J Appl Glass Sci 2011, 2(2):108-116.
    27. Tokyo Uo: "Titanium Oxide for High-Density Data Storage. 2010.
    28. Jones BJ, Vergne MJ, Bunk DM, Locascio LE, Hayes MA: Cleavage of peptides and proteins using light-generated radicals from titanium dioxide. Anal Chem 2007, 79(4):1327-1332.
    29. Smeigh AL, Katz JE, Brunschwig BS, Lewis NS, McCusker JK: Effect of the presence of iodide on the electron injection dynamics of dye-sensitized TiO2-based solar cells. J Phys Chem C 2008, 112(32):12065-12068.
    30. Fischer HC, Chan WCW: Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 2007, 18(6):565-571.
    31. Wang JX, Liu Y, Jiao F, Lao F, Li W, Gu YQ, Li YF, Ge CC, Zhou GQ, Li B et al: Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008, 254(1-2):82-90.
    32. Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, Li YF, Li B, Ge CC, Zhou GQ et al: Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 2008, 183(1-3):72-80.
    33. Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K: Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 2009, 6.
    34. Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M: Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems. J Health Sci 2009, 55(1):95-102.
    35. Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM: NANOSIZED TITANIUM DIOXIDE ENHANCED INFLAMMATORY RESPONSES IN THE SEPTIC BRAIN OF MOUSE. Neuroscience 2010, 165(2):445-454.
    36. Wikipedia: http://en.wikipedia.org/wiki/Astrocyte.
    37. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R: Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 2011, 22(37).
    38. Tiffany-Castiglioni E, Qian YC: Astroglia as metal depots: Molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 2001, 22(5):577-592.
    39. Wikipedia: http://en.wikipedia.org/wiki/Microglia.
    40. Lloyd SA, Shanks, R. A. , & Robertson, C. L. : https://sites.google.com/a/northgeorgia.edu/psychlabs/home/neuroscience/bv-2-microglia-lab.
    41. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40(14):4346-4352.
    42. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B: Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 2007, 115(11):1631-1637.
    43. Wang Y, Wang B, Zhu MT, Li M, Wang HJ, Wang M, Ouyang H, Chai ZF, Feng WY, Zhao YL: Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 2011, 205(1):26-37.
    44. Wikipedia: http://en.wikipedia.org/wiki/Neuroblastoma.
    45. Benard J, Raguenez G, Kauffmann A, Valent A, Ripoche H, Joulin V, Job B, Danglot G, Cantais S, Robert T et al: MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: A molecular portrait of stage 4S. Mol Oncol 2008, 2(3):261-271.
    46. Wikipedia: http://en.wikipedia.org/wiki/Neuron.
    47. O'Brien J, Wilson I, Orton T, Pognan F: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000, 267(17):5421-5426.
    48. Monmaturapoj N, Thepsuwan W, Hobang N, Mai-ngam K: Influences of reinforcing agents on properties of biphasic calcium phosphate ceramics. Adv Appl Ceram 2013, 112(7):389-396.
    49. Zhu XN, Hondroulis E, Liu WJ, Li CZ: Biosensing Approaches for Rapid Genotoxicity and Cytotoxicity Assays upon Nanomaterial Exposure. Small 2013, 9(9-10):1821-1830.
    50. Jiang LL, Lu X, Leng Y, Qu SX, Feng B, Weng J, Watari F: Osteoblast behavior on TiO2 microgrooves prepared by soft-lithography and sol-gel methods. Mater Sci Eng C-Mater Biol Appl 2012, 32(4):742-748.
    51. Oji MO, Wood JV, Downes S: Effects of surface-treated cpTi and Ti6Al4V alloy on the initial attachment of human osteoblast cells. J Mater Sci-Mater Med 1999, 10(12):869-872.
    52. Brakmane G, Madani SY, Seifalian A: Cancer Antibody Enhanced Real Time Imaging Cell Probes - a Novel Theranostic Tool using Polymer Linked Carbon Nanotubes and Quantum Dots. Anti-Cancer Agents Med Chem 2013, 13(5):821-832.
    53. Chou HT, Wang TP, Lee CY, Tai NH, Chang HY: Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Mater Sci Eng C-Mater Biol Appl 2013, 33(2):989-995.
    54. Shao SJ, Li L, Yang G, Li JR, Luo C, Gong T, Zhou SB: Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm 2011, 421(2):310-320.
    55. Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M: Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 2008, 179(2):78-84.
    56. Mukherjee SG, O'Claonadh N, Casey A, Chambers G: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol Vitro 2012, 26(2):238-251.
    57. de Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM: A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res Part A 2012, 100A(9):2348-2357.
    58. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY: Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro 2009, 23(6):1076-1084.
    59. Monteiro-Riviere NA, Oldenburg SJ, Inman AO: Interactions of aluminum nanoparticles with human epidermal keratinocytes. J Appl Toxicol 2010, 30(3):276-285.
    60. Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311(5761):622-627.
    61. Oberdorster G, Oberdorster E, Oberdorster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005, 113(7):823-839.
    62. Donaldson K, Tran CL: Inflammation caused by particles and fibers. Inhal Toxicol 2002, 14(1):5-27.
    63. Halliwell B, Gutteridge JMC: OXYGEN FREE-RADICALS AND IRON IN RELATION TO BIOLOGY AND MEDICINE - SOME PROBLEMS AND CONCEPTS. Arch Biochem Biophys 1986, 246(2):501-514.
    64. Srivastava RK, Rahman Q, Kashyap MP, Singh AK, Jain G, Jahan S, Lohani M, Lantow M, Pant AB: Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum Exp Toxicol 2013, 32(2):153-166.
    65. Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M: Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 2012, 6(5):501-513.
    66. Singh S, Shi TM, Duffin R, Albrecht C, van Berlo D, Hoehr D, Fubini B, Martra G, Fenoglio I, Borm PJA et al: Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007, 222(2):141-151.
    67. Park EJ, Yi J, Chung YH, Ryu DY, Choi J, Park K: Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008, 180(3):222-229.
    68. Shi YL, Wang F, He JB, Yadav S, Wang H: Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicol Lett 2010, 196(1):21-27.
    69. Gurr JR, Wang ASS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005, 213(1-2):66-73.
    70. Horie M, Nishio K, Fujita K, Kato H, Endoh S, Suzuki M, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K et al: Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicol Vitro 2010, 24(6):1629-1638.
    71. Tucci P, Porta G, Agostini M, Dinsdale D, Iavicoli I, Cain K, Finazzi-Agro A, Melino G, Willis A: Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 2013, 4.
    72. Jaeger A, Weiss DG, Jonas L, Kriehuber R: Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 2012, 296(1-3):27-36.
    73. Kandel ER SJ, Jessel TM, ed.: Ch. 2: Nerve cells and behavior. Principles of Neural Science McGraw-Hill Professional 2000, ISBN 978-0-8385-7701-1.
    .
    74. Kandel ER SJ, Jessel TM, ed. : Ch. 4:The cytology of neurons. Principles of Neural Science McGraw-Hill Professional 2000, ISBN 978-0-8385-7701-1.
    75. Allen NJ, Barres BA: NEUROSCIENCE Glia - more than just brain glue. Nature 2009, 457(7230):675-677.
    76. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Jacob W, Lent R, Herculano-Houzel S: Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain. J Comp Neurol 2009, 513(5):532-541.
    77. Wikipedia: http://en.wikipedia.org/wiki/Nervous_system#cite_note-Allen2009-9.
    78. Kandel ER SJ, Jessel TM, ed. : Ch 17: The anatomical organization of the central nervous system. Principles of Neural Science McGraw-Hill Professional 2000, ISBN 978-0-8385-7701-1.
    79. Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J-K, Cho MH: Toxicity and tissue distribution of magnetic nanoparticles in mice (vol 89, pg 338, 2006). Toxicol Sci 2006, 90(1):267-267.
    80. Sarlo K, Blackburn KL, Clark ED, Grothaus J, Chaney J, Neu S, Flood J, Abbott D, Bohne C, Casey K et al: Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology 2009, 263(2-3):117-126.
    81. Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A: Influence of Nanoparticles on Blood-Brain Barrier Permeability and Brain Edema Formation in Rats. In: Brain Edema Xiv. Edited by Czernicki Z, Baethmann A, Ito U, Katayama Y, Kuroiwa T, Mendelow D, vol. 106. Vienna: Springer-Verlag Wien; 2010: 359-364.
    82. Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF: Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 2009, 187(1):15-21.
    83. Lee HY, Choi YJ, Jung EJ, Yin HQ, Kwon JT, Kim JE, Im HT, Cho MH, Kim JH, Kim HY et al: Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J Nanopart Res 2010, 12(5):1567-1578.
    84. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ: The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 2006, 92(2):456-463.
    85. Wang JY, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC, Hussain SM, Schlager JJ, Ali SF: Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 2009, 30(6):926-933.
    86. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P: Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 2009, 30(4):702-711.
    87. Hoelting L, Scheinhardt B, Bondarenko O, Schildknecht S, Kapitza M, Tanavde V, Tan B, Lee QY, Mecking S, Leist M et al: A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 2013, 87(4):721-733.
    88. Zhao JX, Yao Y, Liu SC, Zhang T, Ren GG, Yang Z: Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro. J Nanopart Res 2012, 14(11).
    89. Wang F, Jiao CP, Liu JW, Yuan HH, Lan MB, Gao F: Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol Vitro 2011, 25(8):1548-1556.
    90. Xue Y, Wu J, Sun J: Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 2012, 214(2):91-98.
    91. Wu J, Sun JA, Xue Y: Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 2010, 199(3):269-276.
    92. Valdiglesias V, Costa C, Sharma V, Kilic G, Pasaro E, Teixeira JP, Dhawan A, Laffon B: Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 2013, 57:352-361.
    93. Simko M, Mattsson MO: Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review. Part Fibre Toxicol 2010, 7.
    94. Liu PD, Huang ZH, Gu N: Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotox Environ Safe 2012, 87:124-130.
    95. Chou Y-CHC: The Study of â-amyloid Protein Aggregation By Using Surface Plasmon Resonance Biosensor. 2005.
    96. Dickson DW, Lee SC, Mattiace LA, Yen SHC, Brosnan C: MICROGLIA AND CYTOKINES IN NEUROLOGICAL DISEASE, WITH SPECIAL REFERENCE TO AIDS AND ALZHEIMERS-DISEASE. Glia 1993, 7(1):75-83.
    97. Barger SW, Harmon AD: Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 1997, 388(6645):878-881.
    98. Combs CK, Karlo JC, Kao SC, Landreth GE: beta-Amyloid stimulation of microglia and monocytes results in TNF alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21(4):1179-1188.
    99. Ho GJ, et al.: Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr Drug Targets Inflamm Allergy 2005, 4(2):p. 247-256.
    100. Liu B, Hong JS: Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003, 304(1):1-7.
    101. Rubio-Perez JM, Morillas-Ruiz JM: A Review: Inflammatory Process in Alzheimer's Disease, Role of Cytokines. Sci World J 2012.
    102. Rossner S L-DC, Zeitschel U, Perez-Polo JR.: Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005, 92(2): p. 226-234.
    103. Xia MQ, Hyman BT: Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J Neurovirol 1999, 5(1):32-41.
    104. Rossi F, Bianchini E: Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes. Biochem Biophys Res Commun 1996, 225(2):474-478.
    105. Mrak RE, Griffin WST: Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging 2001, 22(6):903-908.
    106. Orzylowska O, Oderfeld-Nowak B, Zaremba M, Januszewski S, Mossakowski M: Prolonged and concomitant induction of astroglial immunoreactivity of interleukin-1beta and interleukin-6 in the rat hippocampus after transient global ischemia. Neurosci Lett 1999, 263(1):72-76.
    107. Yermakova A, O'Banion MK: Cyclooxygenases in the central nervous system: Implications for treatment of neurological disorders. Curr Pharm Design 2000, 6(17):1755-1776.
    108. Lee SC, Zhao ML, Hirano A, Dickson DW: Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: Association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 1999, 58(11):1163-1169.
    109. Sayre LM, Perry G, Smith MA: Redox metals and neurodegenerative disease. Curr Opin Chem Biol 1999, 3(2):220-225.
    110. Singh M, Nam DT, Arseneault M, Ramassamy C: Role of By-Products of Lipid Oxidation in Alzheimer's Disease Brain: A Focus on Acrolein. J Alzheimers Dis 2010, 21(3):741-756.
    111. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP: Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008, 213(1):114-121.
    112. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA: Redox proteomic identification of 4-Hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008, 30(1):107-120.
    113. Bradley MA, Markesbery WR, Lovell MA: Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 2010, 48(12):1570-1576.
    114. Nath RG, Chung FL: DETECTION OF EXOCYCLIC 1,N-2-PROPANODEOXYGUANOSINE ADDUCTS AS COMMON DNA LESIONS IN RODENTS AND HUMANS. Proc Natl Acad Sci U S A 1994, 91(16):7491-7495.
    115. Liu XL, Lovell MA, Lynn BC: Development of a method for quantification of acrolein-deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tissue. Anal Chem 2005, 77(18):5982-5989.
    Chapter 3
    1. Suzuki H, Toyooka T, Ibuki Y: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 2007, 41(8):3018-3024.
    2. Stefansson A, Gunnarsson I, Giroud N: New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free (TM) Ion Chromatography and inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 2007, 582(1):69-74.
    3. Mermet JM: Is it still possible, necessary and beneficial to perform research in ICP-atomic emission spectrometry? J Anal At Spectrom 2005, 20(1):11-16.
    Chapter 4
    1. Giacomelli CE, Avena MJ, DePauli CP: Adsorption of bovine serum albumin onto TiO2 particles. J Colloid Interface Sci 1997, 188(2):387-395.
    2. Ji ZX, Jin X, George S, Xia TA, Meng HA, Wang X, Suarez E, Zhang HY, Hoek EMV, Godwin H et al: Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ Sci Technol 2010, 44(19):7309-7314.
    3. Ellingsen JE: A STUDY ON THE MECHANISM OF PROTEIN ADSORPTION TO TIO2. Biomaterials 1991, 12(6):593-596.
    4. Klinger A, Steinberg D, Kohavi D, Sela MN: Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 1997, 36(3):387-392.
    5. Wei XZ, Zhu GF, Fang JF, Chen JY: Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles. Int J Photoenergy 2013.
    6. Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, Li YF, Li B, Ge CC, Zhou GQ et al: Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 2008, 183(1-3):72-80.
    7. Liu YF, Xu Z, Li XD: Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. Brain Inj 2013, 27(7-8):934-939.
    8. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40(14):4346-4352.
    9. De Astis S, Corradini I, Morini R, Rodighiero S, Tomasoni R, Lenardi C, Verderio C, Milani P, Matteoli M: Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. Nanoscale 2013, 5(22):10963-10974.
    10. Wu J, Sun JA, Xue Y: Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 2010, 199(3):269-276.
    11. Donaldson K, Stone V, Borm PJA, Jimenez LA, Gilmour PS, Schins RPF, Knaapen AM, Rahman I, Faux SP, Brown DM et al: Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 2003, 34(11):1369-1382.
    12. Marnett LJ: Oxyradicals and DNA damage. Carcinogenesis 2000, 21(3):361-370.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE