簡易檢索 / 詳目顯示

研究生: 羅傑斯
Ranjith, Hosur-Ganesh
論文名稱: 應用於智慧製造之微機電壓電式振動感測模組開發
Development of Piezoelectric MEMS for Smart Manufacturing Vibration Sensing Modules
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 方維倫
Fang, Wei-Leun
鄭志鈞
Cheng, Chih-Chun
吳名清
Wu, Ming-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 94
中文關鍵詞: 压电加速度计
外文關鍵詞: Piezoelectric, MEMS Accelerometer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一壓電式加速度感測系統,並將其應用於機械振動的監控。隨著工業4.0的發展,對於機台設備的預防性維護需求明顯增加。為提升加速度計的靈敏度,本研究於不同的頻率下,比較不同形變模態之壓電式加速度計的設計,並於加速度計中嵌入平衡環以提升靈敏度,同時降低加速度計的交叉感應度。本研究採用PZT-5A作為壓電式感測材料,並運用Global MEMS 5µm的製程平台實現相關的設計。
    本研究透過不同軟體(如COMSOL、Matlab、LTSpice),開發出一種模態分析的方法,可用於整合客製化的加速度計及電荷放大器。本研究成功將自行開發之壓電式微機電加速度計,與市售之電荷放大器、微控制器STM32F373CCT6整合至PCB上,完成一壓電式微機電加速度計感測系統,可進行即時監控。此外,本研究所提出的嵌入式平衡環設計,使新型的加速度計靈敏度,較傳統式的加速度計提高3倍。於研究過程中所開發的固件程式及使用者介面功能,亦以實際的振動儀器成功的驗證。


    This work demonstrates a system level approach of developing a PZT accelerometer system for machine vibration monitoring. As Industry 4.0 is booming, the demand for predictive maintenance of the machine has significantly increased. Various types of bending type piezoelectric accelerometer designs were studied at different frequencies to increase the sensitivity of the accelerometer. An approach of using guard rings embedded to accelerometers to increase sensitivity and reduce cross-sensitive acceleration has been proposed in this work. PZT-5A material is used as the PZT Sensing material. The designs will be fabricated on GlobalMEMS 5um platform.
    An effective approach called Process modal analysis was developed by integrating different software’s (i.e COMSOL, Matlab and LTSpice) to study the non-standard accelerometer designs integrated with charge amplifiers. PZT MEMS accelerometer system with Commercially off Chip components has been successfully implemented at Printed Circuit Board (PCB) level. An effective system level approach to integrate PZT MEMS accelerometer and charge amplifiers with microcontroller STM32F373CCT6 for real time system monitoring was demonstrated. A Novel accelerometer design with Gimbal rings to enhance sensitivity was presented and has 3 times increase in the sensitivity over its Conventional design. Software algorithms were developed and signal processing techniques were used to realize the real time monitoring of machines. Firmware code and user interface applications were developed in this work and were successfully verified using shaker system.

    CHAPTER 1 12 1.1. MOTIVATION AND BACKGROUND 12 1.2. MACHINE VIBRATION MONITORING 14 1.3. VIBRATION SENSORS 16 1.4. THESIS OVERVIEW 19 CHAPTER 2 20 2.1. PIEZOELECTRICITY 20 2.2 PIEZOELECTRIC ACCELEROMETERS 22 2.3 PIEZOELECTRIC ACCELEROMETERS MODELLING 23 2.3.1 Simulation Settings 26 2.4 PIEZOELECTRIC ACCELEROMETER DESIGN 27 2.4.1. 5 KHz Piezoelectric Accelerometer Design 1 27 2.4.2. 5 KHz Piezoelectric Accelerometer Design 2 31 2.4.3. 10 KHz Piezoelectric Accelerometer Design 1 34 2.4.4. 20 KHz Piezoelectric Accelerometer Design 1 36 2.4.5. 20 KHz Piezoelectric Accelerometer Design 2 38 2.5. LAYOUT 41 CHAPTER 3 43 3.1 INTRODUCTION 43 3.2 LTC6081 CHARGE AMPLIFIER 44 3.2.1 Features of LTC6081 44 3.3 PROCESS MODEL ANALYSIS 46 3.4 VERIFICATION OF FFT AND IFFT ALGORITHMS 47 3.5 SIMULATION RESULTS OF PROCESS MODEL ANALYSIS 48 CHAPTER 4 50 4.1 INTRODUCTION 50 4.1.1 Block Diagram 50 4.3 PCB SCHEMATICS 54 4.4 PCB LAYOUT 55 CHAPTER 5 58 5.1 INTRODUCTION 58 5.2 FIRMWARE SOFTWARE IDE 58 5.2.1 µVision Project Manager and Run Time Environment 59 5.2.2 µVision Editor 60 5.2.3 STM32CubeMx 61 5.3 USER INTERFACE IDE 62 5.4 FIRMWARE CODE FLOWCHART 64 5.5 DIGITAL FILTERING 65 5.5.1 Filter System Block Diagram 65 5.5.2 Antialiasing Filter 66 5.5.3 Digital FIR filter 66 CHAPTER 6 69 6.1 MEASUREMENT SETUP 69 6.2 JITTER ANALYSIS 86 6.3 SENSITIVITY ANALYSIS BETWEEN GIMBAL DESIGN AND CONVENTIONAL DESIGN 89 CHAPTER 7 92 7.1 CONCLUSION 92 7.2 FUTURE WORK 92 REFERENCE 93

    [1] SS Li, S Lee, K Bhattacharjee , “MEMS vibrating structure using a single-crystal piezoelectric thin film layer ” - US Patent 7,586,239, 2009.

    [2] G.A. Macdonald, “A review of low cost accelerometers for vehicle dynamics”, Sens. Actuators, A21–A23 (1990), pp. 303-307.

    [3] N. Yazdi, F. Ayazi, K.Najafi, “Micromachined inertial sensors”,Proc. IEEE, 86 (1998), pp. 1640-1659

    [4]L.P. Wang, R.A. Wolf, Y. Wang, K.K. Deng, L. Zou, R.J. Davis, S. Trolier-McKinstry, “Design, fabrication, and measurement of high sensitivity piezoelectric microelectromechanical systems accelerometers”.
    [5] H. Chen, S. Shen, M. Bao, “Over-range capacity of a piezoresistive microaccelerometer” Sens. Actuators, 58 (3) (1997), pp. 197-201
    [6] P. Scheeper, J.O. Gullov, L.M. Kofoed, “A piezoelectric triaxial accelerometer” J. Micromech. Microeng., 6 (1996), pp. 131-133

    [7] S.P. Beeby, J.N. Ross, N.M. White, “Design and fabrication of a micromachined silicon accelerometer with thick film printed PZT sensors”, J. Micromech. Microeng., 10 (2000), pp. 322-328

    [8] T. Berther, G.H. Gautschi, J. Kubler, “Capacitive accelerometers for static and low-frequency measurements”, Sound and Vibration, 30 (6) (1996), pp. 28-30
    [9] D.W. Stachell, J.C. Greenwood, “A thermally-excited silicon accelerometer”, Sens. Actuators, 17 (1989), pp. 241-245
    [10] R.L. Kubena, G.M. Atkinson, W.P. Robinson, F.P. Stratton, “A new miniaturized surface micromachined tunneling accelerometer”, IEEE Electron Device Lett., 17 (6) (1996), pp. 306-308
    [11] U.A. Dauderstadt, P.H.S. de Vries, R. Hiratsuka, P.M. Sarro, “Silicon accelerometer based on thermalpiles”, Sens. Actuators A, 46/47 (1995), pp. 201-204
    [12] E. Abbaspour-Sani, R.S. Huang, C.Y. Kwok, “A wide-range linear optical accelerometer” Sens. Actuators A, 49 (1995), pp. 149-154.
    [13] H. Takao, Y. Matsumoto, M. Ishida, “Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers”, Sens. Actuators A, 65 (1998), pp. 61-68
    [14]P.L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motame “Integrated silicon microbeam PI-FET accelerometer”, IEEE Trans. Electron Devices, ED-29 (1) (1982), pp. 27-33
    [15] D.L. Polla, L. F Francis, “Ferroelectric thin films in microelectromechanical systems applications” MRS Bull., 21 (7) (1996), pp. 59-65
    [16] D.L. DeVoe, A.P. Pisano, “Surface micromachined piezoelectric accelerometers (PiXLs)”,
    J. Microelectromech. Syst., 10 (2001), pp. 180-186

    [17] Y. Nemirovsky, A. Nemirovsky, P. Muralt, N. Setter, “Design of a novel thin-film piezoelectric accelerometer”, Sens. Actuators A, 56 (1996), pp. 239-249

    [18] A.T. Kollias, J.N. Avaritsiotis, “Time domain simulation and measurements for piezoelectric bimorphs”, Sens. Actuators A, 116 (2004), pp. 293-303

    [19] A.H. Nayfeh, P.H. Pai, “Linear and Nonlinear Structural Mechanics”, John Wiley & Sons Inc., 2004.
    [20] S.K. Ha, C. Keilers, F.K. Chang, “Finite element analysis of composite structures containing distributed piezoceramic”, sensors and actuators, AIAA J., 30 (3) (1992), pp. 772-780

    QR CODE