簡易檢索 / 詳目顯示

研究生: 游筱雯
Yu, Hsiao-Wen
論文名稱: 度-度相關低密度奇偶檢查碼及其擴展
Degree-degree Correlated Low-density Parity-check Codes and Their Extensions
指導教授: 張正尚
Chang, Cheng-Shang
口試委員: 趙啟超
Chao, Chi-chao
李端興
Lee, Duan-Shin
王忠炫
Wang, Chung-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 54
中文關鍵詞: 隨機圖低密度奇偶檢查碼機率密度演化
外文關鍵詞: random graphs, low-density parity-check code, density evolution
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數現存研究在分析一個隨機組成的低密度奇偶檢查碼(LDPC code) 的性能時,假設隨機選取的邊的兩端點度數分布是獨立的。在這篇論文中,我們進一步考慮具有度-度相關性的低密度奇偶檢查碼(LDPC code) 的組成。為此,我們提出了兩種方法來構建度-度相關的低密度奇偶檢查碼(LDPC code) 集合,並且推導了這種度-度相關低密度奇偶檢查碼(LDPC code) 在二元擦除通道(BEC)上的機率密度演化方程組。通過進行廣泛的數值實驗,我們展示了度-度相關如何影響低密度奇偶檢查碼(LDPC code) 的性能。我們的數值結果表示,具有負度-度相關的低密度奇偶檢查碼(LDPC code) 可以提高最大可容忍擦除機率。此外,增加負度-度相關性可以促進更好的不等錯誤保護(UEP) 設計。在我們擴展的最後一部分中,我們將度-度相關的低密度奇偶檢查碼(LDPC code) 推廣到多邊緣類型的低密度奇偶檢查碼(multi-edge type LDPC code)。此外,我們利用多邊緣類型的低密度奇偶檢查碼(multi-edge type LDPC code)來構建卷積低密度奇偶檢查碼(convolutional LDPC code)。


    Most existing work on analyzing the performance of a random ensemble of low-density parity-check (LDPC) codes assumes that the degree distributions of the two ends of a randomly selected edge are independent. In this paper, we go one step further by considering ensembles of LDPC codes with degree-degree correlations. We propose two methods to construct such an ensemble of degree-degree correlated LDPC codes and derive a system of density evolution equations for these codes over a binary erasure channel (BEC). By conducting extensive numerical experiments, we demonstrate how the degree-degree correlation affects the performance of LDPC codes. Our numerical results suggest that LDPC codes with negative degree-degree correlation could enhance the maximum tolerable erasure probability. Moreover, increasing the negative degree-degree correlation could facilitate better unequal error protection (UEP) design. In the final part of our extension efforts, we extend degree-degree correlated LDPC codes to multi-edge type LDPC codes and leverage these to construct convolutional LDPC codes.

    Contents . . . .1 List of Figures . . . .4 1 Introduction . . . .5 2 Density evolution for LDPC codes with independent degree distributions . . . .11 3 Construction of degree-degree correlated random LDPC codes . . . .15 3.1 Block construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Block construction . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 General construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Density evolution in correlated LDPC codes . . . .24 5 Extensions . . .27 5.1 MET-LDPC codes with independently selected edge types . . . . . . . . 27 5.2 Convolutional LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Poisson degree distributions of the check nodes . . . . . . . . . . . . . . . 34 6 Numerical results . . . .36 6.1 Block construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Performance improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.1 The LDPC code by Shokrollahi and Storn [1] . . . . . . . . . . . 42 6.2.2 The LDPC code in Example 3.64 of the book [2] . . . . . . . . . . 43 6.3 Convolutional LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7 Conclusion . . . .50

    [1] A. Shokrollahi and R. Storn, “Design of efficient erasure codes with differential evolution,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2000.
    [2] T. Richardson and R. Urbanke, Modern coding theory. Cambridge university press, 2008.
    [3] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 1962.
    [4] J. H. Bae, A. Abotabl, H.-P. Lin, K.-B. Song, and J. Lee, “An overview of channel coding for 5g nr cellular communications,” APSIPA Transactions on Signal and Information Processing, vol. 8, 2019.
    [5] T. Thi Bao Nguyen, T. Nguyen Tan, and H. Lee, “Low-complexity high-throughput QC-LDPC decoder for 5G new radio wireless communication,” Electronics, vol. 10, no. 4, p. 516, 2021.
    [6] H.-C. Lee, J.-H. Shy, Y.-M. Chen, and Y.-L. Ueng, “LDPC coded modulation for TLC flash memory,” in 2017 IEEE Information Theory Workshop (ITW). IEEE, 2017, pp. 204–208.
    [7] Y. Fang, Y. Bu, P. Chen, F. C. Lau, and S. Al Otaibi, “Irregular-mapped protograph LDPC-coded modulation: A bandwidth-efficient solution for 6G-enabled mobile networks,” IEEE Transactions on Intelligent Transportation Systems, 2021.
    [8] N. Bonello, S. Chen, and L. Hanzo, “Low-density parity-check codes and their rateless relatives,” IEEE Communications Surveys & Tutorials, vol. 13, no. 1, pp. 3–26, 2010.
    [9] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.
    [10] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random processes via and-or tree evaluation,” in SODA, vol. 98, 1998, pp. 364–373.
    [11] M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low density codes and improved designs using irregular graphs,” in Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998, pp. 249–258.
    [12] M. A. Shokrollahi, “New sequences of linear time erasure codes approaching the channel capacity,” in International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. Springer, 1999, pp. 65–76.
    [13] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599–618, 2001.
    [14] N. Rahnavard and F. Fekri, “New results on unequal error protection using LDPC codes,” IEEE Communications Letters, vol. 10, no. 1, pp. 43–45, 2006.
    [15] N. Rahnavard, H. Pishro-Nik, and F. Fekri, “Unequal error protection using partially regular LDPC codes,” IEEE Transactions on Communications, vol. 55, no. 3, pp. 387–391, 2007.
    [16] N. Rahnavard, B. N. Vellambi, and F. Fekri, “Rateless codes with unequal error protection property,” IEEE Transactions on Information Theory, vol. 53, no. 4, pp. 1521–1532, 2007.
    [17] Y.-H. Chen, Y.-T. Liu, C.-H. Wang, and C.-C. Chao, “Analysis of UEP QC-LDPC codes using density evolution,” in 2020 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2020, pp. 230–234.
    [18] Y. Zhao, Y. Zhang, F. C. Lau, Z. Zhu, and H. Yu, “Duplicated zigzag decodable fountain codes with the unequal error protection property,” Computer Communications, vol. 185, pp. 66–78, 2022.
    [19] M. Newman, Networks: an introduction. OUP Oxford, 2009.
    [20] D. J. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronics letters, vol. 33, no. 6, pp. 457–458, 1997.
    [21] D. J. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.
    [22] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacityapproaching irregular low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 619–637, 2001.
    [23] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,“Practical loss-resilient codes,” in Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 1997, pp. 150–159.
    [24] S. Giddens, M. A. Gomes, J. P. Vilela, J. L. Santos, and W. K. Harrison, “Enumeration of the degree distribution space for finite block length LDPC codes,” in ICC 2021-IEEE International Conference on Communications. IEEE, 2021, pp. 1–6.
    [25] T. Richardson, R. Urbanke et al., “Multi-edge type LDPC codes,” in Workshop honoring Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, California, 2002, pp. 24–25.
    [26] S. Jayasooriya, M. Shirvanimoghaddam, L. Ong, G. Lechner, and S. J. Johnson, “A new density evolution approximation for LDPC and multi-edge type LDPC codes,”IEEE Transactions on Communications, vol. 64, no. 10, pp. 4044–4056, 2016.
    [27] D.-S. Lee, C.-S. Chang, M. Zhu, and H.-C. Li, “A generalized configuration model with degree correlations and its percolation analysis,” Applied Network Science, vol. 4, no. 1, pp. 1–21, 2019.
    [28] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,”in IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference. IEEE, 2007, pp. 3250–3254.
    [29] P. Elias, “Coding for two noisy channels,” in Proc. 3rd London Symp. Inf. Theory, Washington, DC. IEEE, 1955, pp. 61–76.
    [30] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE Transactions on Information Theory, vol. 57, no. 2, pp. 803–834, 2011.
    [31] D. G. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes constructed from protographs,” IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 4866–4889, 2015.
    [32] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden terminals in wireless networks,” in Proceedings of the ACM SIGCOMM 2008 conference on Data communication, 2008, pp. 159–170.
    [33] M. Kazemi, T. M. Duman, and M. M´edard, “Collision resolution for random access,”IEEE Transactions on Wireless Communications, 2021.
    [34] C.-M. Chang, Y.-J. Lin, C.-S. Chang, and D.-S. Lee, “On the stability regions of coded Poisson receivers with multiple classes of users and receivers,” IEEE/ACM Transactions on Networking, vol. 31, no. 1, pp. 234–247, 2023.
    [35] G. Liva, “Graph-based analysis and optimization of contention resolution diversity slotted ALOHA,” IEEE Transactions on Communications, vol. 59, no. 2, pp. 477–487, 2011.
    [36] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of threshold saturation for coupled scalar recursions,” in 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2012, pp. 51–55.
    [37] ——, “A simple proof of threshold saturation for coupled vector recursions,” in 2012 IEEE Information Theory Workshop. IEEE, 2012, pp. 25–29.

    QR CODE