簡易檢索 / 詳目顯示

研究生: 陳益鴻
Chen, Yi-Hong
論文名稱: 石墨烯/奈米碳管混成物增強水泥複合材料之製備與 特性及新型水泥無機聚合物電池之製備 與電化學阻抗譜和放電性能研究
Preparation and Properties of Graphene/Carbon nanotubes hybrid Reinforced cement composites and Novel Cement Geopolymer Batteries with Electrochemical Impedance Spectroscopy and Discharge Performance
指導教授: 馬振基
Ma, Chen-Chi M.
口試委員: 江金龍
Chiang, Chin-Lung
蔡德豪
Tsai, De-Hao
李宗銘
Li, ZhongMing
胡啟章
Hu, Chi-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 210
中文關鍵詞: 水泥石墨烯電池無機聚合物
外文關鍵詞: Cement, Graphene, Batteries, Geopolymer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討奈米強化水泥(Nano reinforced cement)複合材料機械性質和無機聚合物(Geopolymer)電化學的特性,研究內容探討混合石墨烯奈米片(Graphene Nanoplatelets, GNPs)/多壁奈米碳管(Multi-walled carbon nanotubes, MWCNTs)和水泥所組成複合材料的製備和性能以及無機聚合物作為固態電解質的性能分析。主要研究分為以下二個部分:

    1. 石墨烯/奈米碳管混成物增強水泥複合材料之製備與特性
    多壁奈米碳管(MWCNTs)和石墨烯奈米片(GNPs)在水泥複合材料中的應用成功取決於它們的分散性能。在本研究中,MWCNTs和GNPs利用表面活性劑聚羧酸酯醚(Polycarboxylate ether, PC)改性。利用一維MWCNTs橋接在相鄰二維的GNPs之間,有效地避免了GNPs的重新堆疊和MWCNTs的聚集,更有效分散在水溶液中。在MWCNTs和GNPs之間產生了優異的協同效應,提升了各種物理和化學性質。GNPs/MWCNTs混成結構改善了水泥複合材料的機械性能(抗壓強度和抗拉強度)和體積穩定性(乾燥收縮)。電子顯微鏡(SEM)圖像清楚地顯示GNPs/MWCNTs混成物適用於水泥複合材料。 GN11-PC(GN11為GNPs:MWCNTs = 1:1)的混成重量比導致最佳抗壓強度,其強度大於單獨添加GNPs或MWCNTs時獲得的抗壓強度。與空白組樣品相比,含有0.05wt%GN11-PC的水泥複合材料的抗壓強度與空白組樣品相比在28天齡期增加了61%,抗拉強度提高了47.1%,而收縮率降低了6.9%。

    2. 新型水泥無機聚合物電池之製備與電化學阻抗譜和放電性能研究
    本研究提出了以無機聚合物為基材的電池,它具有作為固態電池的良好潛力,它擁有室溫下的快速離子傳導,減少的電池洩漏和不易燃的性質。無機聚合物利用鹼激發(10 M KOH)將研磨的粒狀高爐礦渣(Ground granulated blast furnace slag , GGBFS)製備而成,除了快速硬化和高離子電導率之外,還具有與水泥相似的機械性能。過去一些研究上,利用水泥作為固態電解質可產生足夠的且可持續的電力輸出,但工作電壓和放電持久性很低。實驗結果表明,無機聚合物的電池具有比水泥基電池更好的電化學性能並研究無機聚合物的齡期和聚合程度與其產生的功率密度和工作電壓之間的關係。無機聚合物的最小體積電阻在第1天為1.9 Ω而電阻率0.65 kΩ·cm。使用無機聚合物電解質,銅片為陰極和鋁片為陽極研究電池的放電電壓,電流密度和功率密度。在0.13 mAcm-2的恆定電流密度下,工作電壓保持在0.97 V並保持穩定600秒。最大電流密度在0.4V時為1173 μAcm-2,最大功率密度為507 μWcm-2。


    The study focuses on the mechanical properties of nano reinforced cement composites and the electrochemical properties of geopolymers. The research topics of this dissertation are related to the preparation and properties of hybrid graphene (Graphene Nanoplatelets, GNPs) / carbon nanotubes (Multi-walled) and performance of the geopolymers as solid electrolytes. There are two parts in this study:

    1. Preparation and properties of graphene/carbon nanotube hybrid reinforced cement composites

    The success of application of multi-wall carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in cement composites depend on their dispersion properties. In this study, MWCNTs and GNPs were modified by the surfactant polycarboxylate ether (PC). One-dimensional MWCNTs and two-dimensional GNPs led to the MWCNTs forming a bridge between adjacent GNP sheets, effectively avoiding restacking of GNPs and agglomeration of MWCNTs, which resulted in greater dispersion. An excellent synergetic effect was generated between MWCNTs and GNPs, enhancing various physical and chemical properties. Hybrid GNPs/MWCNTs structures improved the mechanical properties of cement composites (compressive strength and tensile strength) and volume stability (drying shrinkage). Scanning electron microscope (SEM) images clearly showed that hybrid GNPs/MWCNTs were compatible for use in cement composites. The hybrid weight ratio of GN11-PC (GN11 means GNPs:MWCNTs = 1:1) led to optimal compressive strength, greater than that obtained upon addition of GNPs or MWCNTs individually. The compressive strength of the cement composites containing 0.05 wt.% GN11-PC (by weight of cement) aged for 28 days increased by 61% in comparison with the blank sample, and the tensile strength increased by 47.1 %, while shrinkage decreased by 6.9 %.

    2. Preparation and Characterization of Novel Cement Geopolymer Batteries with Electrochemical Impedance Spectroscopy and Discharge Performance

    This research presents a geopolymer-based battery that has good potential as a solid-state battery owing to fast ionic conduction at room temperature, reduced battery leakage, and a non-flammable nature. The geopolymer was synthesized by alkali activation (10 M KOH) of ground granulated blast furnace slag (GGBFS), and has a similar mechanical behavior to cement, in addition to rapid hardening and a high ionic conductivity. Some researchers have used cement as an electrolyte to produce a sufficient, sustainable electrical output, but the operation voltage and discharge life are low. The experimental results showed that the geopolymer-based battery had a better electrochemical performance than cement-based batteries. Relationships between the age and polymerization of the geopolymer and the power density and operating voltage it produced were investigated. The minimum bulk resistance and electrical resistivity of the geopolymer were 1.9 Ω and 0.65 kΩ·cm on day 1, respectivily. The discharge voltage, current density, and power density of the battery was investigated using a geopolymer electrolyte, a copper plate cathode, and an aluminum plate anode. Under a constant current density of 0.13 mAcm-2, the operating voltage was maintained at 0.97 V and remained stable for 600 s. The maximum current density was 1173 μAcm−2 at 0.4 V, and the maximum power density was 507 μWcm-2.

    目錄 中文摘要 I Abstract III 謝誌 VI 目錄 X 圖目錄 XIV 表目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 水泥簡介 4 1-2-1 波特蘭水泥之水合特性 9 1-3 爐石簡介 13 1-3-1 爐石化學成分和物理性質 14 1-3-2 爐石粉之水化作用及卜作嵐反應 15 1-3-3 爐石粉對混凝土硬固性質之影響 16 1-4 石墨烯簡介 19 1-4-1 石墨烯特性 21 1-4-2 石墨烯製備 23 1-4-3 化學還原型氧化石墨烯 27 1-4-4 化學還原方式 35 1-5 奈米碳管簡介 41 1-5-1 奈米碳管機械性質 43 1-6 無機聚合物(Geopolymer) 45 1-6-1 無機聚合物之發展 46 1-6-2 無機聚合物之聚合反應機制 46 1-6-3 無機聚合物之結構 54 第二章 文獻回顧 ...57 2-1 奈米材料應用於水泥基材料的物理和化學性質 57 2-2 奈米補強水泥和混凝土複合材料 61 2-2-1 奈米材料機械式分散法 62 2-2-2 物理表面改性分散法 63 2-2-3 化學表面改性分散法 64 2-2-4 水泥複合材料的製備 68 2-3 流動性(Slump flow) 70 2-4 奈米材料對水泥水化影響 73 2-5 奈米增強水泥和混凝土的微觀結構複合材料 78 2-6 硬化水泥複合材料的機械性能 80 2-6-1 奈米二氧化矽 80 2-6-2 奈米碳管 80 2-6-3 奈米碳管/卜作嵐材料 82 2-6-4 氧化石墨烯 84 2-7 水泥電化學特性 85 2-8 水泥與聚羧酸系減水劑作用機理 86 第三章 石墨烯/奈米碳管混成物增強水泥複合材料之製備與特性.. 90 3-1 研究目的 90 3-2 實驗部分 93 3-2-1 實驗藥品 93 3-2-2 實驗儀器設備 97 3-2-3 新拌試驗分析 104 3-2-4 硬固試驗分析 104 3-2-5 精密儀器分析法 106 3-2-6 實驗步驟 107 3-3 結果與討論 111 3-3-1 MWCNTs和GNPs在水溶液中的分散 111 3-3-2 流動性試驗和抗壓強度分析結果的比較 113 3-3-3 具有不同水/灰比(W / C)和碳奈米材料含量的抗壓強度 116 3-3-4 具有不同水/灰比(W / C)和碳奈米材料含量的抗拉強度 120 3-3-5 不同水/灰比(W / C)和碳奈米材料的乾燥收縮 122 3-3-6 表面特徵研究 125 3-4 結論 128 第四章 新型水泥無機聚合物電池之製備與電化學阻抗譜和放電性能研究....................... 130 4-1 研究目的 130 4-2 實驗部分 133 4-2-1 實驗藥品 133 4-2-2 實驗儀器設備 134 4-2-3 水泥(OPC)及無機聚合物(Geopolymer)漿體試驗分析 137 4-2-4 硬固試驗分析 138 4-2-5 實驗步驟 142 4-3 結果與討論 146 4-3-1 凝結時間(Setting time) 146 4-3-2 抗壓強度 147 4-3-3 交流阻抗分析 148 4-3-4 不同齡期的水泥和無機聚合物電池放電性能 153 4-3-5 不同齡期的水泥和無機聚合物電池功率密度測試 159 4-3-6 單位密度及含水量重量損失 161 4-3-7 孔隙率 164 4-4 結論 167 第五章 總結論 169 第六章 參考文獻 178 附錄-作者簡介及發表著作一覽表 209 圖目錄 圖1-1 水泥乾縮造成的裂縫 2 圖1-2 水泥加水後發熱曲線變化圖 11 圖1-3 Graphene is a 2D building material for carbon materials of all other dimensionalities. Graphene can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite [20]. 20 圖1-4 Simulation scheme of the nanostructures of graphene and graphene oxide nanosheets (top row) and the natural amphiphiles of a cellulose dimer, a tri-alanine peptide, and a palmitic acid (bottom row). Color schemes: brown - carbon, red - oxygen, blue - hydrogen, green - nitrogen[35] 24 圖1-5 Variations of the Lerf-Klinowski model indicating ambiguity regarding the presence (top) or absence (bottom) of carboxylic acids on the periphery of the basal plane of the graphitic platelets of GO[38]. 28 圖1-6 Digital pictures of as-prepared graphite oxide dispersed in water and 13 organic solvents through bath ultrasonication (1 h). Top: dispersions immediately after sonication. Bottom: dispersions 3 weeks after sonication. The yellow color of the o-xylene sample is due to the solvent itself 31 圖1-7 A non-contact mode AFM image of exfoliated GO sheets with three height profiles acquired in different locations [40]. 32 圖1-8 Conductivity of thermally reduced GO as a function of the sp2 carbon fraction [39]. 34 圖1-9 Chemically converted graphene suspensions. a,b, Photographs of 15 mg of graphite oxide (GO) paper in a glass vial (a) and the resultant hydrazinium graphene (HG) dispersion after addition of hydrazine (b). Below each vial is a three-dimensional computer-generated molecular model of GO (carbon in grey, oxygen in red and hydrogen in white) and chemically converted graphene, respectively, suggesting that removal of –OH and –COOH functionalities upon reduction restores a planar structure [42]. 36 圖1-10 Images of an individual chemically converted graphene sheet. a–c, Markers are used to obtain SEM (a) and AFM (b,c) images of the same specimen. d, Height profiles taken along the white, red and blue solid lines in c highlight step heights of 0.6 nm. The frequency distribution (bottom) of all heights collected across the area is bimodal[42]. 37 圖1-11 Optical photographs and mechanical properties of the GO films reduced by different chemical agents. (a) Asassembled GO film. (b) 1 h HI acid-reduced GO film at 100 oC. (c) Stress–strain curve of the GO film and HI acid-reduced GO film. (d–f) Hydrazine vapor-, N2H4‧H2O- and NaBH4-reduced GO films. The scale bar in (d–f) is 5 mm[43]. 40 圖1-12 奈米碳管可分為單壁奈米碳管(SWCNT)及多壁奈米碳管(MWCNTs)[49] 42 圖1-13 奈米碳管為石墨單層沿螺旋向量𝐂𝐡方向捲曲,將兩側虛線無縫接合所得之結構。其結構可由(n,m)明確定義[48]。 43 圖1-14 無機聚合物之前導物及主要聚合結構示意圖 47 圖1-15 完整之聚合結構示意圖[68] 49 圖1-16 Na+離子於鋁矽四面體間示意圖[69] 50 圖1-17 無機聚合作用示意圖 53 圖1-18 波特蘭水泥水化過程與無機聚合物聚合機理示意圖 55 圖1-19 無機聚合物結構單元示意圖 55 圖2-1 Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete. Adapted from Sobolev and Ferrada Gutierrez [78]. 60 圖2-2 Effect of 0.05 wt.% GO for w/c of 0.5 on: (a) Stress–strain curves under compression; (b) Load–displacement curves under flexure [120] 85 圖3-1 Mechanism of the synergistic effect between MWCNTs and GNPs in the cement matrix. 92 圖3-2 拌合機 97 圖3-3 恆溫恆濕機 99 圖3-4 乾縮鑄鐵模 99 圖3-5 立方試體模 100 圖3-6 抗壓試驗機 101 圖3-7 抗拉體模 101 圖3-8 指針式比長計 102 圖3-9 流度台 103 圖3-10 場發射掃描式電子顯微鏡Scanning Electron Microscope 103 圖3-11 Sedimentation testing of MWCNTs, GNPs and GNPs/MWCNTs in aqueous solution. (a) 8 mg MWCNTs; (b) 8 mg MWCNTs/0.16 g PC; (c) 8 mg GNPs; (d) 8 mg GNPs/0.16 g PC; (e) 4 mg GNPs /4 mg MWCNTs; (f) 4 mg GNPs/4 mg MWCNTs/0.16 g PC. 112 圖3-12 SEM images of carbon nanofillers. (a) 0.02 wt% G/0.02 wt% N(x20K); (b) 0.02 wt% G/0.02 wt% N/0.8 wt% PC(x20K). 113 圖3-13 Slump flow test results. 115 圖3-14 Compressive strength of cement composites aged for 28 days. 115 圖3-15 Compressive strength of W/C 0.5 cement composites containing various wt.% of GN11-PC 118 圖3-16 Compressive strength of W/C 0.4 cement composites containing various wt.% of GN11-PC. 119 圖3-17 Compressive strength of W/C 0.5 cement composites containing various wt.% of GN11-PC 119 圖3-18 Tensile strength of W/C 0.5 cement composites containing various wt.% of GN11-PC 121 圖3-19 Tensile strength of W/C 0.4 cement composites containing various wt.% of GN11-PC 121 圖3-20 Tensile strength of W/C 0.35 cement composites containing various wt.% of GN11-PC 122 圖3-21 Dry shrinkage of W/C 0.5 cement composites containing various wt.% of GN11-PC 124 圖3-22 Dry shrinkage of W/C 0.4 cement composites containing various wt.% of GN11-PC 124 圖3-23 Dry shrinkage of W/C 0.35 cement composites containing various wt.% of GN11-PC 125 圖3-24 SEM microphotographs of destructed specimens at the age of 28 days (W/C = 0.5) (a) Blank; (b) 0.2 wt.% N-PC; (C) 0.2 wt.% G-PC; (d) 0.05 wt.% GN11-PC; (e) 0.2 wt.% GN11-PC; (f) 0.5 wt.% GN11-PC. 127 圖4-1 無機聚合物電解質電池組裝示意圖 132 圖4-2 水泥初終凝量測儀 135 圖4-3 交流阻抗分析儀 136 圖4-4 電化學分析儀 136 圖4-5 混凝土四點探針分析儀 137 圖4-6 Experimental specimen for EIS analysis 143 圖4-7 Design of a home-made battery device. 144 圖4-8 Experimental specimen for electrical resistivity analysis. 145 圖4-9 EIS of OPC and GP at different water to binder ratios on day 1. 150 圖4-10 EIS of OPC and GP at different water to binder ratios on day 7. 151 圖4-11 EIS of OPC and GP at different water to binder ratios on day 28. 152 圖4-12 Discharge curves of batteries under different constant current density at day 1. 156 圖4-13 Discharge curves of batteries under different constant current density at day 7 157 圖4-14 Discharge curves of batteries under different constant current density at day 28. 158 圖4-15 Polarization curves and corresponding power density plots of the batteries. 160 圖4-16 Hardened density of OPC and GP at different water to binder ratios.. 162 圖4-17 Weight loss of OPC and GP s at different water to binder ratios. 163 圖4-18 Porosity of OPC and GP at different water to binder ratios 165 表目錄 表1-1 波特蘭水泥各種類成份及性質[12] 5 表1-2 水泥成份組成表[13] 8 表1-3 波特蘭水泥加水後主要礦物所產生的水化反應[14] 10 表1-4 Properties of carbon nanotube and graphene[32; 33]. 22 表1-5 Comparison of different graphene preparation methods [21] 25 表1-6 Comparison of different graphene preparation methods (continued) [21] 26 表1-7 Methods for the oxidation of graphite to graphite oxide [39]. 29 表1-8 Comparison of the reducing effect of GO by different methods[43] 39 表1-9 無機聚合物之結構型式[70] 56 表2-1 纖維與奈米材料特性比較[71] 59 表2-2 Mix design for CNTs with other additives in cement-based composite. 65 表2-3 Fresh properties of nanocomposites. 66 表2-4 Mix design for CNTs in cement-based composite. 69 表2-5 Microstructure results of nanocomposites 77 表3-1 Chemical composition of the Type I cement 94 表3-2 渥太華砂粒徑分析 95 表3-3 HEMC Typical Physical Properties 95 表3-4 Specification of the polycarboxylate ether(PC) 96 表3-5 Proportions of GNPs and/or MWCNTs in cement composites 110 表4-1 Chemical analysis and physical properties of slag (%). 134 表4-2 Cement-based and geopolymer electrolyte formulations 142 表4-3 Effect of water to binder ratio on setting time. 147 表4-4 Effects of different water to binder ratios on compressive strength 148 表4-5 Effect of water to binder ratio on bulk resistance. 149 表4-6 Summary of the electrochemical performance results of the geopolymer, cement and soil electrolytes. 161

    第六章 參考文獻
    [1] Wilk, D., Bratasz, Ł., & Kozłowski, R. (2013). Shrinkage cracking in Roman cement pastes and mortars. Cement and Concrete Research, 53, 168-175.
    [2] 吳英信. (2004). 在無對流影響下混凝土傳導研究. 中原大學土木工程研究所碩士學位論文, 1-116.
    [3] Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and building materials, 73, 113-124.
    [4] Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.
    [5] Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., . . . AA. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197.
    [6] Yang, S.-Y., Ma, C.-C. M., Teng, C.-C., Huang, Y.-W., Liao, S.-H., Huang, Y.-L., . . . Chiou, K.-C. (2010). Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 48(3), 592-603.
    [7] Hung, M.-T., Choi, O., Ju, Y. S., & Hahn, H. (2006). Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Applied Physics Letters, 89(2), 023117.
    [8] Worsley, K. A., Kalinina, I., Bekyarova, E., & Haddon, R. C. (2009). Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. Journal of the American Chemical Society, 131(50), 18153-18158.
    [9] Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag1. Cement and Concrete Research, 29(2), 159-170.
    [10] Hall, C. (1976). On the history of portland cement after 150 years. Journal of Chemical Education, 53(4), 222.
    [11] Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 6(61), 56705-56710.
    [12] 汪坦祥, & 趙文成. (2005). 高性能水中自充填混凝土. 國立交通大學土木研究所碩士學位論文, 1-200
    [13] 黃兆龍. (1996). 混凝土性質與行為. 臺北: 詹氏書局.
    [14] Jawed, I., Skalny, J., & Young, J. (1983). Hydration of Portland cement: Applied Science Publishers Essex.
    [15] 黃兆龍. (2002). 混凝土性質與行為. 臺北: 詹氏書局.
    [16] 沈得縣. (1991). 高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究.
    [17] 葉峻閣. (2010). 改良式水中自充填混凝土. 交通大學土木工程系所碩士學位論文, 1-115.
    [18] 林信宏. (2011). 水中自充填混凝土耐久性之研究. 交通大學土木工程系所碩士學位論文, 1-130.
    [19] ldorn, D. M. R. a. G. M. (1982). Hydration, structure, and properties of blast furnace slag cements, mortars, and concrete. Paper presented at the Journal Proceedings.
    [20] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nat Mater, 6(3), 183-191.
    [21] Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157-3180. doi: 10.1039/b923596e
    [22] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., . . . Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200.
    [23] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi: 10.1126/science.1102896
    [24] Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., . . . Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi: http://www.nature.com/nature/journal/v442/n7100/suppinfo/nature04969_S1.html
    [25] Mermin, N. D. (1968). Crystalline Order in Two Dimensions. Physical Review, 176(1), 250-254.
    [26] Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/Polymer Nanocomposites. Macromolecules, 43(16), 6515-6530. doi: 10.1021/ma100572e
    [27] Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13(3), 52-59. doi: http://dx.doi.org/10.1016/S1369-7021(10)70034-1
    [28] Tributsch, H. (1972). Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochemistry and Photobiology, 16(4), 261-269.
    [29] Huang, Z., Liu, X., Li, K., Li, D., Luo, Y., Li, H., . . . Meng, Q. (2007). Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 9(4), 596-598.
    [30] Lee, S. U., Choi, W. S., & Hong, B. (2010). A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Solar Energy Materials and Solar Cells, 94(4), 680-685.
    [31] Hezel, R. (2003). Novel applications of bifacial solar cells. Progress in Photovoltaics: Research and Applications, 11(8), 549-556.
    [32] Zacharia, R., Ulbricht, H., & Hertel, T. (2004). Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B, 69(15), 155406.
    [33] Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., & Haddon, R. C. (2006). Solution Properties of Graphite and Graphene. Journal of the American Chemical Society, 128(24), 7720-7721. doi: 10.1021/ja060680r
    [34] Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127-2150. doi: http://dx.doi.org/10.1016/j.carbon.2010.01.058
    [35] Radic, S., Geitner, N. K., Podila, R., Käkinen, A., Chen, P., Ke, P. C., & Ding, F. (2013). Competitive Binding of Natural Amphiphiles with Graphene Derivatives. Sci. Rep., 3. doi: 10.1038/srep02273
    http://www.nature.com/srep/2013/130724/srep02273/abs/srep02273.html#supplementary-information
    [36] Staudenmaier, L. (1899). Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 32(2), 1394-1399. doi: 10.1002/cber.18990320208
    [37] Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi: 10.1021/ja01539a017
    [38] Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240. doi: Doi 10.1039/B917103g
    [39] Eda, G., & Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Advanced Materials, 22(22), 2392-2415. doi: 10.1002/adma.200903689
    [40] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., . . . Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi: http://dx.doi.org/10.1016/j.carbon.2007.02.034
    [41] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi: 10.1002/adma.201001068
    [42] Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nat Nano, 4(1), 25-29. doi: http://www.nature.com/nnano/journal/v4/n1/suppinfo/nnano.2008.329_S1.html
    [43] Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H.-M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(15), 4466-4474. doi: http://dx.doi.org/10.1016/j.carbon.2010.08.006
    [44] Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56-58.
    [45] Collins, P. G., & Avouris, P. (2000). Nanotubes for electronics. Scientific american, 283(6), 62-69.
    [46] Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications: Academic press.
    [47] Dresselhaus, M. S., Dresselhaus, G., Eklund, P., & Rao, A. (2000). Carbon nanotubes: Springer.
    [48] Thostenson, E. T., Ren, Z., & Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(13), 1899-1912.
    [49] Pan, Z., Wenhui, D., Li, D., & Collins, F. (2013). Graphene oxide reinforced cement and concrete: Google Patents.
    [50] Lu, J. P. (1997). Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 79(7), 1297.
    [51] Hernandez, E., Goze, C., Bernier, P., & Rubio, A. (1998). Elastic properties of C and B x C y N z composite nanotubes. Physical Review Letters, 80(20), 4502.
    [52] Yakobson, B. I., Brabec, C., & Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76(14), 2511.
    [53] Treacy, M. J., Ebbesen, T., & Gibson, J. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes.
    [54] Wong, E. W., Sheehan, P. E., & Lieber, C. M. (1997). Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334), 1971-1975.
    [55] Yu, M.-F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453), 637-640.
    [56] Salvetat, J.-P., Briggs, G. A. D., Bonard, J.-M., Bacsa, R. R., Kulik, A. J., Stöckli, T., . . . Forró, L. (1999). Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 82(5), 944.
    [57] Zhou, W., Bai, X., Wang, E., & Xie, S. (2009). Synthesis, Structure, and Properties of Single‐Walled Carbon Nanotubes. Advanced Materials, 21(45), 4565-4583.
    [58] Salvetat, J.-P., Kulik, A. J., Bonard, J.-M., Briggs, G. A. D., Stöckli, T., Méténier, K., . . . Forró, L. (1999). Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 11(2), 161-165.
    [59] Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of solids, 61(7), 1153-1158.
    [60] Davidovits, J. (1994). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. Journal of Materials education, 16, 91-91.
    [61] McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of cleaner production, 19(9-10), 1080-1090.
    [62] Halas, O., & Svanda, P. (2012). Study on physical-mechanical properties of alkali activated materials based on fly ash. Materials Engineering-Materiálové inžinierstvo (MEMI), 19(4), 175-182.
    [63] Shi, C., Krivenko, P., & Roy, D. (2006). Hydration and microstructure of alkali-activated slag cements. Alkali-activated cements and concrete. Oxford: Taylor and Francis, 66.
    [64] Xu, H., Van Deventer, J., & Lukey, G. (2001). Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures. Industrial & Engineering Chemistry Research, 40(17), 3749-3756.
    [65] Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals engineering, 20(14), 1261-1277.
    [66] Van Jaarsveld, J., Van Deventer, J., & Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals. Miner. Eng, 10, 659-669.
    [67] Davidovits, J. (2008). Geopolymer chemistry and applications: Geopolymer Institute.
    [68] Davidovits, J. (1999). Chemistry of geopolymeric systems, terminology. Paper presented at the Geopolymer.
    [69] Barbosa, V. F., MacKenzie, K. J., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309-317.
    [70] Davidovits, J. (2005). Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. Paper presented at the Proceedings of 2005 geopolymer conference.
    [71] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1-3), 3-9.
    [72] Li, H., Xiao, H.-g., Yuan, J., & Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35(2), 185-189.
    [73] Sobolev, K., Flores, I., Torres-Martinez, L., Valdez, P., Zarazua, E., & Cuellar, E. (2009). Engineering of SiO 2 nanoparticles for optimal performance in nano cement-based materials Nanotechnology in construction 3 (pp. 139-148): Springer.
    [74] Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete–a review. Construction and building materials, 24(11), 2060-2071.
    [75] Oltulu, M., & Şahin, R. (2013). Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy and Buildings, 58, 292-301.
    [76] Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and building materials, 21(3), 539-545.
    [77] Said, A. M., Zeidan, M. S., Bassuoni, M., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and building materials, 36, 838-844.
    [78] Sobolev, K., & Gutiérrez, M. F. (2005). How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84(10), 14.
    [79] Yang, X., Zhu, J., Qiu, L., & Li, D. (2011). Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high‐performance supercapacitors. Advanced Materials, 23(25), 2833-2838.
    [80] Qiu, L., Zhang, X., Yang, W., Wang, Y., Simon, G. P., & Li, D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 47(20), 5810-5812.
    [81] Patil, A. J., Vickery, J. L., Scott, T. B., & Mann, S. (2009). Aqueous stabilization and self‐assembly of graphene sheets into layered bio‐nanocomposites using DNA. Advanced Materials, 21(31), 3159-3164.
    [82] Labroo, P., & Cui, Y. (2013). Flexible graphene bio-nanosensor for lactate. Biosensors and Bioelectronics, 41, 852-856.
    [83] Tapasztó, O., Tapasztó, L., Markó, M., Kern, F., Gadow, R., & Balázsi, C. (2011). Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 511(4-6), 340-343.
    [84] Nasibulin, A. G., Koltsova, T., Nasibulina, L. I., Anoshkin, I. V., Semencha, A., Tolochko, O. V., & Kauppinen, E. I. (2013). A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta materialia, 61(6), 1862-1871.
    [85] Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P., & Tabari, H. Z. (2012). Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Construction and building materials, 31, 105-111.
    [86] Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and building materials, 37, 707-715.
    [87] Jo, B.-W., Kim, C.-H., Tae, G.-h., & Park, J.-B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and building materials, 21(6), 1351-1355.
    [88] Najigivi, A., Khaloo, A., & Rashid, S. A. (2013). Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 54, 52-58.
    [89] Zhang, M.-h., & Li, H. (2011). Pore structure and chloride permeability of concrete containing nano-particles for pavement. Construction and building materials, 25(2), 608-616.
    [90] Yousefi, A., Allahverdi, A., & Hejazi, P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Construction and building materials, 41, 224-230.
    [91] Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.
    [92] Strano, M. S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., . . . Smalley, R. (2003). The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. Journal of nanoscience and nanotechnology, 3(1-2), 81-86.
    [93] Metaxa, Z. S., Konsta-Gdoutos, M. S., & Shah, S. P. (2013). Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 36, 25-32.
    [94] Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., & Leonhardt, A. (2012). Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 34(10), 1104-1113.
    [95] Szleifer, I., & Yerushalmi-Rozen, R. (2005). Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer, 46(19), 7803-7818.
    [96] Wang, H. (2009). Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid & Interface Science, 14(5), 364-371.
    [97] Collins, F., Lambert, J., & Duan, W. H. (2012). The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement and Concrete Composites, 34(2), 201-207.
    [98] Cwirzen, A., Habermehl-Cwirzen, K., Nasibulin, A., Kaupinen, E., Mudimela, P., & Penttala, V. (2009). SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Materials Characterization, 60(7), 735-740.
    [99] Tyson, B. M., Abu Al-Rub, R. K., Yazdanbakhsh, A., & Grasley, Z. (2011). Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. Journal of Materials in Civil Engineering, 23(7), 1028-1035.
    [100] Abu Al-Rub, R. K., Tyson, B. M., Yazdanbakhsh, A., & Grasley, Z. (2011). Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers. Journal of Nanomechanics and Micromechanics, 2(1), 1-6.
    [101] Li, G. Y., Wang, P. M., & Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43(6), 1239-1245.
    [102] Li, G. Y., Wang, P. M., & Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 29(5), 377-382.
    [103] Nasibulina, L. I., Anoshkin, I. V., Nasibulin, A. G., Cwirzen, A., Penttala, V., & Kauppinen, E. I. (2012). Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite. Journal of Nanomaterials, 2012, 35.
    [104] Sanchez, F., Zhang, L., & Ince, C. (2009). Multi-scale performance and durability of carbon nanofiber/cement composites Nanotechnology in Construction 3 (pp. 345-350): Springer.
    [105] Hilding, J., Grulke, E. A., George Zhang, Z., & Lockwood, F. (2003). Dispersion of carbon nanotubes in liquids. Journal of dispersion science and technology, 24(1), 1-41.
    [106] Lv, S., Ma, Y., Qiu, C., & Zhou, Q. (2013). Regulation of GO on cement hydration crystals and its toughening effect. Magazine of Concrete Research, 65(20), 1246-1254.
    [107] Geng, Y., Wang, S. J., & Kim, J.-K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of colloid and interface science, 336(2), 592-598.
    [108] ASTM, C. (1999). 305, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International.
    [109] Gong, K., Tan, T., Dowman, M., Qiu, L., Li, D., Collins, F. F., & Duan, W. H. (2012). Rheological behaviours of graphene oxide reinforced cement composite. Paper presented at the ACUN-6 2012: Proceedings of the 6th International Composites Conference on Composites and Nanocomposites in Civil, Offshore and Mining Infrastructure.
    [110] Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., & Repette, W. L. (2009). Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and building materials, 23(7), 2487-2491.
    [111] Berra, M., Carassiti, F., Mangialardi, T., Paolini, A., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and building materials, 35, 666-675.
    [112] Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and building materials, 43, 557-562.
    [113] Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., & Shah, S. P. (2012). Effects of colloidal nanoSiO2 on fly ash hydration. Cement and Concrete Composites, 34(10), 1095-1103.
    [114] Senff, L., Hotza, D., Lucas, S., Ferreira, V., & Labrincha, J. A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering: A, 532, 354-361.
    [115] Kowald, T., & Trettin, R. (2004). Influence of surface-modified carbon nanotubes on ultrahigh performance concrete. Paper presented at the Proceedings of International Symposium on Ultra High Performance Concrete.
    [116] Wille, K., & Loh, K. (2010). Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes. Transportation Research Record: Journal of the Transportation Research Board(2142), 119-126.
    [117] Banfill, P. (1990). Use of the ViscoCorder to study the rheology of fresh mortar. Magazine of Concrete Research, 42(153), 213-221.
    [118] Yang, Y., Grulke, E. A., Zhang, Z. G., & Wu, G. (2006). Thermal and rheological properties of carbon nanotube-in-oil dispersions. Journal of Applied Physics, 99(11), 114307.
    [119] Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7), 1052-1059.
    [120] Gong, K., Pan, Z., Korayem, A. H., Qiu, L., Li, D., Collins, F., . . . Duan, W. H. (2014). Reinforcing effects of graphene oxide on portland cement paste. Journal of Materials in Civil Engineering, 27(2), A4014010.
    [121] Swamy, R. (1974). THE TECHNOLOGY OF STEEL FIBRE REINFORCED CONCRETE FOR PRACTICAL APPLICATIONS. Proceedings of the Institution of Civil Engineers, 56(2), 143-159.
    [122] Pan, Z. Graphene oxide reinforced cement and concrete. 2012, WO Patent App: PCT/AU2012/001,582.
    [123] Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and building materials, 49, 121-127.
    [124] Vera-Agullo, J., Chozas-Ligero, V., Portillo-Rico, D., García-Casas, M., Gutiérrez-Martínez, A., Mieres-Royo, J., & Grávalos-Moreno, J. (2009). Mortar and concrete reinforced with nanomaterials Nanotechnology in Construction 3 (pp. 383-388): Springer.
    [125] Zhang, M.-H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construction and building materials, 29, 573-580.
    [126] Madani, H., Bagheri, A., & Parhizkar, T. (2012). The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cement and Concrete Research, 42(12), 1563-1570.
    [127] Björnström, J., Martinelli, A., Matic, A., Börjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters, 392(1-3), 242-248.
    [128] Makar, J., Margeson, J., & Luh, J. (2005). Carbon nanotube/cement composites-early results and potential applications.
    [129] Makar, J. M., & Chan, G. W. (2009). Growth of cement hydration products on single‐walled carbon nanotubes. Journal of the American Ceramic Society, 92(6), 1303-1310.
    [130] Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 32(2), 110-115.
    [131] Melo, V. S., Calixto, J. M., Ladeira, L. O., & Silva, A. P. (2011). Macro-and micro-characterization of mortars produced with carbon nanotubes. ACI Materials Journal, 108(3), 327.
    [132] Li, G. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34(6), 1043-1049.
    [133] Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and Concrete Research, 35(10), 1943-1947.
    [134] Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 38(8-9), 1112-1118.
    [135] Zdravkov, B. D., Čermák, J. J., Šefara, M., & Janků, J. (2007). Pore classification in the characterization of porous materials: A perspective. Central European Journal of Chemistry, 5(2), 385-395.
    [136] Nochaiya, T., & Chaipanich, A. (2011). Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Applied Surface Science, 257(6), 1941-1945.
    [137] Wang, B., Han, Y., & Liu, S. (2013). Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Construction and building materials, 46, 8-12.
    [138] Collins, F., & Sanjayan, J. (2001). Microcracking and strength development of alkali activated slag concrete. Cement and Concrete Composites, 23(4-5), 345-352.
    [139] Kim, H., Nam, I. W., & Lee, H.-K. (2014). Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite structures, 107, 60-69.
    [140] Nazari, A., & Riahi, S. (2011). The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Composites Part B: Engineering, 42(3), 570-578.
    [141] Campillo, I., Dolado, J., & Porro, A. (2004). High-performance nanostructured materials for construction. Special Publication-Royal Society of Chemistry, 292, 215-226.
    [142] Cwirzen, A., Habermehl-Cwirzen, K., & Penttala, V. (2008). Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in cement research, 20(2), 65-73.
    [143] Musso, S., Tulliani, J.-M., Ferro, G., & Tagliaferro, A. (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology, 69(11-12), 1985-1990.
    [144] Al-Rub, R. K. A., Ashour, A. I., & Tyson, B. M. (2012). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construction and building materials, 35, 647-655.
    [145] Chaipanich, A., Nochaiya, T., Wongkeo, W., & Torkittikul, P. (2010). Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering: A, 527(4-5), 1063-1067.
    [146] Sanchez, F., & Ince, C. (2009). Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology, 69(7-8), 1310-1318.
    [147] Morsy, M., Alsayed, S., & Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and building materials, 25(1), 145-149.
    [148] Peyvandi, A., Sbia, L. A., Soroushian, P., & Sobolev, K. (2013). Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction and building materials, 48, 265-269.
    [149] Burstein, G. T., & Speckert, E. I. (2008). Developing a Battery using Concrete as an Electrolyte. ECS Transactions, 3(42), 13-20.
    [150] Sakai, T., Kaneko, M., & Masuko, M. (2007). Batteries with fresh concrete for their electrolyte and method for ensuring the filling conditions of concrete on their placing. Jpn Kokai Tokkyo Koho JP, 2007263735, 7.
    [151] Meng, Q., & Chung, D. (2010). Battery in the form of a cement-matrix composite. Cement and Concrete Composites, 32(10), 829-839.
    [152] Byrne, A., Holmes, N., & Norton, B. (2015). Cement based batteries and their potential for use in low power operations. Paper presented at the IOP Conference Series: Materials Science and Engineering.
    [153] Holmes, N., Byrne, A., & Norton, B. (2015). First steps in developing cement-based batteries to power cathodic protection of embedded steel in concrete. SDAR* Journal of Sustainable Design & Applied Research, 3(1), 3.
    [154] Byrne, A., Barry, S., Holmes, N., & Norton, B. (2017). Optimising the Performance of Cement-Based Batteries. Advances in Materials Science and Engineering, 2017.
    [155] Polizzi, N. F., Skourtis, S. S., & Beratan, D. N. (2012). Physical constraints on charge transport through bacterial nanowires. Faraday discussions, 155, 43-61.
    [156] Mahowald, P. (2006). Soil battery: Google Patents.
    [157] Meng, Q. (2008). Batteries with soil and cement as electrolytes: State University of New York at Buffalo.
    [158] Meng, Q., Kenayeti, Y., & Chung, D. (2012). Battery in the form of a soil-matrix composite. Journal of Energy Engineering, 141(3), 04014013.
    [159] Khan, N., Saleem, Z., & Abas, N. (2008). Experimental study of earth batteries. Paper presented at the Electrical Engineering, 2008. ICEE 2008. Second International Conference on.
    [160] Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., . . . Chen, Y. (2009). Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 47(3), 922-925.
    [161] Yu, N., Zhang, Z., & He, S. (2008). Fracture toughness and fatigue life of MWCNT/epoxy composites. Materials Science and Engineering: A, 494(1-2), 380-384.
    [162] Kim, H., Park, K.-Y., Hong, J., & Kang, K. (2014). All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific reports, 4, 5278.
    [163] Su, Y.-S., & Manthiram, A. (2012). A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 48(70), 8817-8819.
    [164] Si, Y., & Samulski, E. T. (2008). Exfoliated graphene separated by platinum nanoparticles. Chemistry of Materials, 20(21), 6792-6797.
    [165] Cwirzen, A. (2010). Controlling physical properties of cementitious matrixes by nanomaterials. Paper presented at the Advanced Materials Research.
    [166] Mani, V., Chen, S.-M., & Lou, B.-S. (2013). Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int J Electrochem Sci, 8(11641), e60.
    [167] Yen, M.-Y., Hsiao, M.-C., Liao, S.-H., Liu, P.-I., Tsai, H.-M., Ma, C.-C. M., . . . Ger, M.-D. (2011). Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon, 49(11), 3597-3606.
    [168] Novaes, F. D., Rurali, R., & Ordejón, P. (2010). Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS nano, 4(12), 7596-7602.
    [169] Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., . . . Kittrell, C. (2012). A seamless three-dimensional carbon nanotube graphene hybrid material. Nature communications, 3, 1225.
    [170] Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., . . . Wei, F. (2010). A three‐dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Advanced Materials, 22(33), 3723-3728.
    [171] Zhou, C., Li, F., Hu, J., Ren, M., Wei, J., & Yu, Q. (2017). Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Construction and building materials, 134, 336-345.
    [172] Yang, S.-Y., Lin, W.-N., Huang, Y.-L., Tien, H.-W., Wang, J.-Y., Ma, C.-C. M., . . . Wang, Y.-S. (2011). Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon, 49(3), 793-803.
    [173] Boukendakdji, O., Kadri, E.-H., & Kenai, S. (2012). Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cement and Concrete Composites, 34(4), 583-590.
    [174] Standard, A. (2009). C150: Standard Specification for Portland Cement. Annual Book of ASTM Standards.
    [175] Standard, A. (2012). C778-12 standard specification for standard sand. ASTM International, West Conshohocken, PA.
    [176] Knapen, E., & Van Gemert, D. (2009). Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research, 39(1), 6-13.
    [177] Tkalya, E. E., Ghislandi, M., de With, G., & Koning, C. E. (2012). The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Current Opinion in Colloid & Interface Science, 17(4), 225-232.
    [178] Metaxa, Z. (2015). Polycarboxylate based superplasticizers as dispersant agents for exfoliated graphene nanoplatelets reinforcing cement based materials. J. Eng. Sci. Tech. Rev, 8, 1-5.
    [179] Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir, 28(40), 14110-14113.
    [180] Lin, S., Shih, C.-J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32), 12810-12823.
    [181] Sharma, S., & Kothiyal, N. (2015). Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Advances, 5(65), 52642-52657.
    [182] Wang, Y., Wu, Y., Huang, Y., Zhang, F., Yang, X., Ma, Y., & Chen, Y. (2011). Preventing graphene sheets from restacking for high-capacitance performance. The Journal of Physical Chemistry C, 115(46), 23192-23197.
    [183] Felekoğlu, B., Türkel, S., & Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4), 1795-1802.
    [184] Łaźniewska-Piekarczyk, B. (2014). The methodology for assessing the impact of new generation superplasticizers on air content in self-compacting concrete. Construction and building materials, 53, 488-502.
    [185] Manzur, T., Yazdani, N., Emon, M., & Bashar, A. (2014). Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. Journal of Materials, 2014.
    [186] Balasubramaniam, B., Mondal, K., Ramasamy, K., Palani, G. S., & Iyer, N. R. (2017). Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 5(4), 39.
    [187] Xie, X.-L., Mai, Y.-W., & Zhou, X.-P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials science and engineering: R: Reports, 49(4), 89-112.
    [188] Babak, F., Abolfazl, H., Alimorad, R., & Parviz, G. (2014). Preparation and mechanical properties of graphene oxide: cement nanocomposites. The Scientific World Journal, 2014.
    [189] Krishna, V., & Kumar, R. (2016). Water to Cement Ratio: A Simple and Effective Approach to Control Plastic and Drying Shrinkage in Concrete. Sustainable Construction Materials and Technology.
    [190] Siddique, R., & Mehta, A. (2014). Effect of carbon nanotubes on properties of cement mortars. Construction and building materials, 50, 116-129.
    [191] Li, W.-W., Ji, W.-M., Wang, Y.-C., Liu, Y., Shen, R.-X., & Xing, F. (2015). Investigation on the mechanical properties of a cement-based material containing carbon nanotube under drying and freeze-thaw conditions. Materials, 8(12), 8780-8792.
    [192] Blandine, F., Habermehi-Cwirzen, K., & Cwirzen, A. (2016). Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste. Frontiers of Structural and Civil Engineering, 10(2), 224-235.
    [193] Nadiv, R., Shtein, M., Refaeli, M., Peled, A., & Regev, O. (2016). The critical role of nanotube shape in cement composites. Cement and Concrete Composites, 71, 166-174.
    [194] Xu, S., Liu, J., & Li, Q. (2015). Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Construction and building materials, 76, 16-23.
    [195] Sun, B., Mindemark, J., Edström, K., & Brandell, D. (2014). Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics, 262, 738-742.
    [196] Ashrafi, R., Sahu, D. K., Kesharwani, P., Ganjir, M., & Agrawal, R. (2014). Ag+-ion conducting Nano-Composite Polymer Electrolytes (NCPEs): Synthesis, characterization and all-solid-battery studies. Journal of Non-Crystalline Solids, 391, 91-95.
    [197] Taib, N. U., & Idris, N. H. (2014). Plastic crystal–solid biopolymer electrolytes for rechargeable lithium batteries. Journal of Membrane Science, 468, 149-154.
    [198] Shin, B. R., Nam, Y. J., Oh, D. Y., Kim, D. H., Kim, J. W., & Jung, Y. S. (2014). Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochimica Acta, 146, 395-402.
    [199] Tatsumisago, M., Takano, R., Tadanaga, K., & Hayashi, A. (2014). Preparation of Li3BO3–Li2SO4 glass–ceramic electrolytes for all-oxide lithium batteries. Journal of Power Sources, 270, 603-607.
    [200] Tatsumisago, M., & Hayashi, A. (2012). Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics, 225, 342-345.
    [201] ASTM. (2003). Standard specification for ground granulated blast-furnace slag for use in concrete and mortars. Paper presented at the ASTM.
    [202] Day, R. L., & Marsh, B. K. (1988). Measurement of porosity in blended cement pastes. Cement and Concrete Research, 18(1), 63-73.
    [203] Papayianni, I., & Stefanidou, M. (2006). Strength–porosity relationships in lime–pozzolan mortars. Construction and building materials, 20(9), 700-705.
    [204] Chindaprasirt, P., & Rukzon, S. (2008). Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Construction and building materials, 22(8), 1601-1606.
    [205] Garzon, A., Sanchez, J., Andrade, C., Rebolledo, N., Menéndez, E., & Fullea, J. (2014). Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars. Cement and Concrete Composites, 53, 249-257.
    [206] Gallé, C. (2001). Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying. Cement and Concrete Research, 31(10), 1467-1477.
    [207] Qureshi, M. N., & Ghosh, S. (2013). Effect of alkali content on strength and microstructure of GGBFS paste. Global Journal of Research In Engineering.
    [208] BALLIEU, P., NOYELLE, B., & PAUWELS, J. Concrete setting retarder mechanism.
    [209] Levi-strauss, C. (1966). The science of concrete.
    [210] Odler, I., & Rößler, M. (1985). Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cement and Concrete Research, 15(3), 401-410.
    [211] Kumar, R., & Bhattacharjee, B. (2003). Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 33(1), 155-164.
    [212] Dong, B., Qiu, Q., Xiang, J., Huang, C., Xing, F., & Han, N. (2014). Study on the carbonation behavior of cement mortar by electrochemical impedance spectroscopy. Materials, 7(1), 218-231.
    [213] Wei, X., Xiao, L., & Li, Z. (2008). Electrical measurement to assess hydration process and the porosity formation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 23(5), 761-766.
    [214] Vedalakshmi, R., Devi, R. R., Emmanuel, B., & Palaniswamy, N. (2008). Determination of diffusion coefficient of chloride in concrete: an electrochemical impedance spectroscopic approach. Materials and Structures, 41(7), 1315-1326.
    [215] Mokhtar, M., Majlan, E., Talib, M., Ahmad, A., Tasirin, S., & Daud, W. (2016). A short review on alkaline solid polymer electrolyte based on polyvinyl alcohol (PVA) as polymer electrolyte for electrochemical devices applications. International Journal of Applied Engineering Research, 11(19), 10009-10015.
    [216] Li, Q., & Bjerrum, N. J. (2002). Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 110(1), 1-10.
    [217] Chen, L. D., Nørskov, J. K., & Luntz, A. C. (2014). Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. The journal of physical chemistry letters, 6(1), 175-179.
    [218] Vollpracht, A., Lothenbach, B., Snellings, R., & Haufe, J. (2016). The pore solution of blended cements: a review. Materials and Structures, 49(8), 3341-3367.
    [219] Gelman, D., Shvartsev, B., & Ein-Eli, Y. (2014). Aluminum–air battery based on an ionic liquid electrolyte. Journal of Materials Chemistry A, 2(47), 20237-20242.
    [220] Xhanari, K., & Finšgar, M. (2016). Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: a review. Arabian Journal of Chemistry.
    [221] Li, G., Zhang, K., Mezaal, M. A., Zhang, R., & Lei, L. (2015). Effect of electrolyte concentration and depth of discharge for zinc-air fuel cell. Int. J. Electrochem. Sci, 10, 6672-6683.
    [222] Pouhet, R., & Cyr, M. (2015). Alkali–silica reaction in metakaolin-based geopolymer mortar. Materials and Structures, 48(3), 571-583.
    [223] Obla, K., Hong, R., Sherman, S., Bentz, D. P., & Jones, S. Z. (2018). Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions. Advances in civil engineering materials, 7(1), 71.
    [224] Hanjitsuwan, S., Chindaprasirt, P., & Pimraksa, K. (2011). Electrical conductivity and dielectric property of fly ash geopolymer pastes. International Journal of Minerals, Metallurgy, and Materials, 18(1), 94-99.
    [225] Cui, X.-M., Zheng, G.-J., Han, Y.-C., Su, F., & Zhou, J. (2008). A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials. Journal of Power Sources, 184(2), 652-656.

    QR CODE