簡易檢索 / 詳目顯示

研究生: 黃 文
Hwang, Wen
論文名稱: LC3A介導的自噬作用在肺癌進程中之角色探討
Role of LC3A-mediated autophagy in lung cancer progression
指導教授: 周裕珽
Chou, Yu-Ting
口試委員: 張壯榮
Chang, Chuang-Rung
李新城
Lee, Hsin-Chen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 47
中文關鍵詞: 肺癌細胞自噬粒線體
外文關鍵詞: cancer, autophagy, mitochondrion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是全球癌症致死率最高的疾病,而腫瘤的轉移則是造成高死亡率的主要因素。細胞自噬系統可以清除不良損壞的胞器以對抗代謝壓力,促進細胞的存活,然而至今仍不清楚細胞自噬在癌症進程中所扮演的角色。在此項研究中我們發現一個調控細胞自噬的分子LC3A高量的表現在一部分的肺腺癌當中,並且和腫瘤的轉移程度呈現負相關。從各種實驗分析發現LC3A調控的細胞自噬,比起生長慢/高轉移的肺癌細胞,在生長快/低轉移的細胞中有較高的表現,然而如果抑制LC3A表現則會阻斷G1/S細胞週期的進行並使細胞生長變慢。比起生長慢的細胞,快速生長的細胞具有較高的耗氧率並且產生大量的ROS,如用奎寧抑制細胞自噬則會更進一步增加ROS的量。SOX2的表達會促進LC3A的表現並且加速細胞生長和降低轉移的能力。長期用奎寧抑制細胞自噬所篩選出的低量LC3A細胞會降低SOX2的表現,減緩細胞生長,以及增進轉移的能力。同樣的,在SOX2高表現且生長快速的細胞中減少LC3A的量會使細胞生長變慢並且促近轉移。綜合上述的研究結果,在癌症細胞中LC3A所調控的細胞自噬對SOX2調控的細胞生長非常重要,而且在肺線癌中LC3A有潛力可以當作一個預測病情的指標和治療的標的。


    Lung cancer is the leading cause of cancer-related deaths in the world. Tumor metastasis is considered as the main cause that contributes to high mortality during lung cancer progression. Autophagy, a natural, self-devouring process, is crucial for mitigating metabolic stress and promotes cell survival. To date, the role of autophagy in cancer progression remains elusive. Here, we report that LC3A, an autophagy mediator, is highly expressed in a subgroup of lung adenocarcinoma, which is inversely associated with distant metastasis. Immunofluorescence staining and immunoblotting assays revealed that LC3A-mediated autophagy is more highly activated in the high-proliferative/low-invasive lung cancer cell than its low-proliferative/high-invasive counterpart. Clonogenic analysis and cell cycle assays showed that LC3A silencing attenuated cellular growth, causing G1/S cell cycle arrest in high-proliferative lung cancer cells. High-proliferative lung cancer cell exhibited a higher oxygen consumption rate (OCR) and showed a higher reactive oxygen species (ROS) levels compared to its low-proliferative counterpart; pharmacological inhibition of autophagy with chloroquine promoted the ROS production in high-proliferative lung cancer cells. SOX2 expression enhanced LC3A expression and promoted proliferation while inhibiting invasiveness in lung cancer cells. Pharmacological selection of LC3A-low cells with chloroquine not only attenuated SOX2 expression with decreased proliferation but also altered oncogenic properties with increased invasiveness in lung cancer cells. In agreement, knockdown of LC3A expression in SOX2-high proliferative cells enriched SOX2-low cells exhibiting decreased proliferation but increased invasiveness. Combined, our findings demonstrated that LC3A-mediated autophagy is essential for SOX2-induced oncogenic proliferation in lung cancer cells, with a potential to serve as a prognosis marker and therapeutic target in lung adenocarcinoma.

    摘要 4 Abstract 5 致謝 7 Introduction 9 Lung cancer 9 Autophagy 9 SOX2 10 Mitochondria 11 Study aims 12 Materials and Methods 14 Cell lines 14 Quantitative Real-time Polymerase Chain Reaction (Q-PCR) 14 Clonogenic analysis 15 Cell tracking time-lapse microscopy 15 Matrigel invasion assay 16 Plasmid construction 16 Immunoblotting 17 Immunofluorescence staining 17 Lentiviral Infection 18 Flow cytometry analysis 18 Oxygen consumption rate (OCR) analysis 18 Public domain data analysis 19 Results 20 LC3A is expressed in lung adenocarcinoma and inversely associated with distant metastasis 20 LC3A is highly expressed in high proliferative lung cancer cells 20 LC3A silencing attenuates proliferation in lung cancer cells 21 Involvement of autophagy in ROS production 22 LC3A regulates mitochondrial dynamics 22 SOX2 mediates LC3A expression in lung cancer cells 23 LC3A expression determines distinct oncogenic properties in lung cancer cells 24 Discussion 26 Figures 30 References 45

    1. Fitzmaurice, C., et al., Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncology, 2017. 3(4): p. 524.
    2. Herbst, R.S., et al., Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-80.
    3. Travis, W.D., et al., International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol, 2011. 6(2): p. 244-85.
    4. Glick, D., et al., Autophagy: Cellular and molecular mechanisms. Journal of Pathology, 2010. 221(1): p. 3-12.
    5. Mizushima, N., Autophagy: Process and function. Genes & Development, 2007. 21(22): p. 2861-2873.
    6. Rabinowitz, J.D., et al., Autophagy and metabolism. Science, 2010. 330(6009): p. 1344-1348.
    7. Koukourakis, M.I., et al., Autophagosome proteins lc3a, lc3b and lc3c have distinct subcellular distribution kinetics and expression in cancer cell lines. Plos One, 2015. 10(9).
    8. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-676.
    9. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64.
    10. Karsli-Uzunbas, G., et al., Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discovery, 2014. 4(8): p. 914-927.
    11. Rao, S., et al., A dual role for autophagy in a murine model of lung cancer. 2014. 5: p. 3056.
    12. Zhang, S., et al., Sox2, a key factor in the regulation of pluripotency and neural differentiation. World Journal of Stem Cells, 2014. 6(3): p. 305-311.
    13. Takahashi, K., et al., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
    14. Huangfu, D., et al., Induction of pluripotent stem cells from primary human fibroblasts with only oct4 and sox2. Nature Biotechnology, 2008. 26(11): p. 1269-1275.
    15. Gontan, C., et al., Sox2 is important for two crucial processes in lung development: Branching morphogenesis and epithelial cell differentiation. Developmental Biology, 2008. 317(1): p. 296-309.
    16. Que, J.W., et al., Multiple roles for sox2 in the developing and adult mouse trachea. Development, 2009. 136(11): p. 1899-1907.
    17. Chou, Y.T., et al., The emerging role of sox2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells, 2013. 31(12): p. 2607-2619.
    18. Hussenet, T., et al., Sox2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLOS ONE, 2010. 5(1): p. e8960.
    19. Rudin, C.M., et al., Comprehensive genomic analysis identifies sox2 as a frequently amplified gene in small-cell lung cancer. Nat Genet, 2012. 44(10): p. 1111-1116.
    20. Lu, Y., et al., Evidence that sox2 overexpression is oncogenic in the lung. Plos One, 2010. 5(6).
    21. Vonjagow, G., et al., Structure and function of the energy-converting system of mitochondria. Angewandte Chemie-International Edition in English, 1980. 19(9): p. 659-675.
    22. Szabadkai, G., et al., Mitochondria: The hub of cellular ca2+ signaling (vol 23, pg 84, 2008). Physiology, 2008. 23(4): p. 230-230.
    23. Cadenas, E., et al., Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 2000. 29(3-4): p. 222-230.
    24. Scott, I., et al., Mitochondrial fission and fusion. Essays in biochemistry, 2010. 47: p. 85-98.
    25. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology, 2010. 11(12): p. 872-884.
    26. Youle, R.J., et al., Mitochondrial fission, fusion, and stress. Science, 2012. 337(6098): p. 1062-1065.
    27. Warburg, O., et al., The metabolism of tumors in the body. The Journal of General Physiology, 1927. 8(6): p. 519-530.
    28. Lu, J., et al., The warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer letters, 2015. 356(2): p. 156-164.
    29. Guo, J.Y., et al., Activated ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & Development, 2011. 25(5): p. 460-470.
    30. Wang, K., et al., Mitochondria removal by autophagy. Autophagy, 2011. 7(3): p. 297-300.
    31. Takamura, A., et al., Autophagy-deficient mice develop multiple liver tumors. Genes & Development, 2011. 25(8): p. 795-800.
    32. Wei, H., et al., Suppression of autophagy by fip200 deletion inhibits mammary tumorigenesis. Genes & Development, 2011. 25(14): p. 1510-1527.
    33. Wang, S., et al., Transient activation of autophagy via sox2-mediated suppression of mtor is an important early step in reprogramming to pluripotency. Cell Stem Cell, 2013. 13(5): p. 617-625.
    34. Bingle, L., et al., The role of tumour‐associated macrophages in tumour progression: Implications for new anticancer therapies. The Journal of Pathology, 2002. 196(3): p. 254-265.
    35. Kenific, C., et al., Autophagy and metastasis: Another double-edged sword. Current opinion in cell biology, 2010. 22(2): p. 241-245.
    36. Koppenol, W.H., et al., Otto warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011. 11(5): p. 325-337.
    37. Vander Heiden, M.G., et al., Understanding the warburg effect: The metabolic requirements of cell proliferation. Science (New York, N.Y.), 2009. 324(5930): p. 1029-1033.
    38. Boland, M.L., et al., Mitochondrial dysfunction in cancer. Frontiers in Oncology, 2013. 3: p. 292.
    39. Weinhouse, S., et al., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 267.
    40. Balaban, R.S., et al., Mitochondria, oxidants, and aging. Cell, 2005. 120(4): p. 483-495.
    41. Scherz-Shouval, R., et al., Ros, mitochondria and the regulation of autophagy. Trends in Cell Biology, 2007. 17(9): p. 422-427.
    42. Guo, C., et al., Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 2013. 8(21): p. 2003-2014.
    43. van der Bliek, A.M., et al., Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspectives in Biology, 2013. 5(6).
    44. Ferreira-da-Silva, A., et al., Mitochondrial dynamics protein drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLOS ONE, 2015. 10(3): p. e0122308.

    QR CODE