簡易檢索 / 詳目顯示

研究生: 莊嘉培
Zhuang, Jiapei
論文名稱: 多分量的量子氣體中因配對相位而產生的拓撲超流態
Topological Superfluid States Generated by Pairing Phases in Multi-Component Quantum Gases
指導教授: 王道維
Wang, Daw-Wei
口試委員: 仲崇厚
Chung, Chung-Hou
張博堯
Chang, Po-Yao
黃一平
Huang, Yi-Ping
黃靜瑜
Huang, Ching-Yu
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 138
中文關鍵詞: 拓撲態超冷原子
外文關鍵詞: Topological Phase, Ultracold Atoms
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    In this thesis, we investigate the interface between condensed matter physics and cold atom. On the one hand, topological phases in condensed matter physics have attracted significant attention due to their fundamental physics implications and potential applications. For example, information encoded in topological state is robust to local perturbations and topological quantum computing with Majorana zero modes. On the other hand, the high experimental controllability of cold atoms in optical lattices makes them ideal candidates for simulation Hamiltonians of condensed matter system.

    We propose that topological states can be prepared and observed in a bilayer model, which constructed by a bilayer optical lattice with spin polarized fermionic atoms are loaded. Our self-consistent mean-field calculation shows that the gapped topological (p-wave) superfluids in each layer are coupled together by the s-wave pairing in an intermediate inter-layer distance with a spontaneously modulated phases between these two order parameters. We systematically investigate the topological properties of this bilayer model. One of state we interest in is a gapless paired topological superfluid. This state belong to DIII gapless topological superconductor since it has the time-reversal symmetry and particle-hole symmetry. Our work provides a way for future investigation of non-Abelian statistics of Majorana zero modes in the many- body physics with time-reversal symmetry.

    Besides, we develop the bilayer optical lattice into a mulilayer system to explore the phenomenon of dimerization. The ground state is obtained by minimizing the ground state energy. By controlling the strength of the Rydberg-dressed interaction, we can indeed find the ground state with the dimerized pairing. We also find the ground state with coexisted interlayer order parameter and in-plane order parameter in unconventional pairing phases.

    Abstract 1 Acknowledgements 2 Contents 3 List of Figures 6 List of Tables 14 1 Introduction 15 1.1 Background and Motivation 15 1.2 Quantum Simulation 16 1.3 Cold Atom 17 1.3.1 Bose-Einstein Condensate 18 1.3.2 Time-of-Flight 19 1.4 Rydberg Atom 21 1.4.1 Interactions between Rydberg-dressed Atom 23 1.5 Example of Simulation in Cold Atoms 24 1.6 Thesis Overview 28 2 Topological Phase of Matter 30 2.1 Brief History of Topological States with Representative Models 30 2.1.1 Integer Quantum Hall effect 31 2.1.2 Haldane Model 34 2.1.3 Kane-Mele Model 39 2.1.4 Classify Topological Phase Systematically and Automati- cally 43 2.2 Development and Future Perspective 44 2.2.1 Stacking and Twisting 44 2.2.2 Non-Hermitian 44 2.2.3 Out of Equilibrium Dynamical 45 2.3 Majorana Zero Modes 46 2.3.1 Topological Quantum Computation with Braiding Non-Abelian Anyons 46 2.3.2 Majorana Zero Modes in 1D Model 49 2.3.3 Experimental Realization of Majorana Zero Modes 52 3 Quantum Phase Diagram of Bilayer system 55 3.1 Bilayer Model 56 3.1.1 Meanfield Approximation 58 3.1.2 Ground State Energy 59 3.2 Pairing Phases 63 3.2.1 Variational Approach 64 3.2.2 Competition and Co-existence of s- and p-wave Order Pa- rameters 66 3.3 Interaction Strengths 67 3.4 Finite Temperature Effect 70 4 Topological Properties of Bilayer system 74 4.1 The System Symmetry 76 4.2 Energy Spectrum of Bulk 78 4.3 Topological Edge Mode 79 4.4 Topological Charge 81 4.5 Possible Measurement in Time-of-Flight Experiments 84 5 Quantum Phase Diagram in Multi-layer system 88 5.1 Dimerized Kitaev Chain 89 5.2 Multi-layers System 93 5.2.1 Pairing Phases 97 5.2.2 Quantum Phase Diagram in Terms of the Interaction Strengths 98 5.3 Summary and Future work 100 A Topological Edge Mode 102 B Topological Charge 106 B.1 Gap Close Points 106 B.2 Linear Expand 108 B.3 Effective Hamiltonian 110 C Calculation of Time-of-Flight Image 115 C.1 Correlation Function 117 C.2 Majorana Basis 120 Bibliography 122

    [1] P. W. Anderson. More Is Different: Broken symmetry and the nature of the hierarchical structure of science. Science, 177(4047):393–396, August 1972.
    [2] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):467–488, June 1982.
    [3] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum Simulation. Reviews of Modern Physics, 86(1):153–185, March 2014.
    [4] Yuriy Makhlin, Gerd Sch¨on, and Alexander Shnirman. Quantum-state engi- neering with josephson-junction devices. Rev. Mod. Phys., 73:357–400, May 2001.
    [5] Kilian Singer, Ulrich Poschinger, Michael Murphy, Peter Ivanov, Frank Ziesel, Tommaso Calarco, and Ferdinand Schmidt-Kaler. Colloquium: Trapped ions as quantum bits: Essential numerical tools. Rev. Mod. Phys., 82:2609–2632, Sep 2010.
    [6] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 93:025001, Apr 2021.
    [7] Ala´n Aspuru-Guzik and Philip Walther. Photonic quantum simulators. Na- ture Physics, 8(4):285–291, April 2012.

    [8] Scott A. Skirlo, Ling Lu, Yuichi Igarashi, Qinghui Yan, John Joannopoulos, and Marin Soljaˇci´c. Experimental observation of large chern numbers in photonic crystals. Phys. Rev. Lett., 115:253901, Dec 2015.
    [9] L. M. K. Vandersypen and I. L. Chuang. Nmr techniques for quantum control and computation. Rev. Mod. Phys., 76:1037–1069, Jan 2005.
    [10] Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355):995–1001, September 2017.
    [11] A. Einstein. Quantentheorie des einatomigen idealen gases. Sitzungber. Kgl. Akad. Wiss., (261), 1924.
    [12] Wolfgang Ketterle. Nobel lecture: When atoms behave as waves: Bose- einstein condensation and the atom laser. Rev. Mod. Phys., 74:1131–1151, Nov 2002.
    [13] C. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cam- bridge University Press, 2002.
    [14] T.W. Ha¨nsch and A.L. Schawlow. Cooling of gases by laser radiation. Optics Communications, 13(1):68–69, 1975.
    [15] D. J. Wineland, R. E. Drullinger, and F. L. Walls. Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett., 40:1639–1642, Jun 1978.
    [16] Wolfgang Ketterle and N.J. Van Druten. Evaporative cooling of trapped atoms. volume 37 of Advances In Atomic, Molecular, and Optical Physics, pages 181–236. Academic Press, 1996.
    [17] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269(5221):198–201, July 1995. Publisher: American Asso- ciation for the Advancement of Science.
    [18] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose- einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75:1687–1690, Aug 1995.
    [19] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995.
    [20] Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, William D. Phillips, Phillip L. Gould, and Harold J. Metcalf. Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett., 61:169–172, Jul 1988.
    [21] Tomasz M Brzozowski, Maria Maczynska, Michal Zawada, Jerzy Za- chorowski, and Wojciech Gawlik. Time-of-flight measurement of the tem- perature of cold atoms for short trap-probe beam distances. Journal of Optics B: Quantum and Semiclassical Optics, 4(1):62–66, jan 2002.
    [22] C V Kraus, S Diehl, P Zoller, and M A Baranov. Preparing and probing atomic Majorana fermions and topological order in optical lattices. New Journal of Physics, 14(11):113036, November 2012.
    [23] Xiao-Qiong Wang, Guang-Quan Luo, Jin-Yu Liu, W. Vincent Liu, Andreas Hemmerich, and Zhi-Fang Xu. Evidence for an atomic chiral superfluid with topological excitations. Nature, 596(7871):227–231, August 2021.
    [24] Kensuke Inaba and Makoto Yamashita. Time-of-Flight Imaging Method to Observe Signatures of Antiferromagnetically Ordered States of Fermionic Atoms in an Optical Lattice. Physical Review Letters, 105(17):173002, Oc- tober 2010.

    [25] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.
    [26] Camille Aron, Manas Kulkarni, and Hakan E Tu¨reci. Photon-mediated in- teractions: a scalable tool to create and sustain entangled states of n atoms. Physical Review X, 6(1):011032, 2016.
    [27] Arjan F Van Loo, Arkady Fedorov, Kevin Lalumiere, Barry C Sanders, Alexandre Blais, and Andreas Wallraff. Photon-mediated interactions be- tween distant artificial atoms. Science, 342(6165):1494–1496, 2013.
    [28] J. E. Johnson and S. L. Rolston. Interactions between rydberg-dressed atoms. Phys. Rev. A, 82:033412, Sep 2010.
    [29] N Henkel, R Nath, and T Pohl. Three-dimensional roton excitations and supersolid formation in rydberg-excited bose-einstein condensates. Physical review letters, 104(19):195302, 2010.
    [30] Stephan Helmrich, A Arias, N Pehoviak, and Shannon Whitlock. Two- body interactions and decay of three-level rydberg-dressed atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(3):03LT02, 2016.
    [31] Tyler Keating, Robert L. Cook, Aaron M. Hankin, Yuan-Yu Jau, Grant W. Biedermann, and Ivan H. Deutsch. Robust quantum logic in neutral atoms via adiabatic rydberg dressing. Phys. Rev. A, 91:012337, Jan 2015.
    [32] Leon Balents. Spin liquids in frustrated magnets. Nature, 464(7286):199–208, March 2010. Number: 7286 Publisher: Nature Publishing Group.
    [33] Johannes Zeiher, Rick van Bijnen, Peter Schauß, Sebastian Hild, Jae-yoon Choi, Thomas Pohl, Immanuel Bloch, and Christian Gross. Many-body interferometry of a Rydberg-dressed spin lattice. Nature Physics, 12(12):1095– 1099, December 2016. Number: 12 Publisher: Nature Publishing Group.
    [34] Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa, Eugene Demler, and Immanuel Bloch. Direct Mea- surement of the Zak phase in Topological Bloch Bands. Nature Physics, 9(12):795–800, December 2013. arXiv:1212.0572 [cond-mat, physics:quant- ph].
    [35] N.R. Cooper, J. Dalibard, and I.B. Spielman. Topological bands for ultracold atoms. Reviews of Modern Physics, 91(1):015005, March 2019.
    [36] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.
    [37] K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for high- accuracy determination of the fine-structure constant based on quantized hall resistance. Physical review letters, 45(6):494, 1980.
    [38] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408, Aug 1982.
    [39] Klaus von Klitzing, Tapash Chakraborty, Philip Kim, Vidya Madhavan, Xi Dai, James McIver, Yoshinori Tokura, Lucile Savary, Daria Smirnova, Ana Maria Rey, et al. 40 years of the quantum hall effect. Nature Reviews Physics, 2(8):397–401, 2020.
    [40] Michael V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392:45 – 57, 1984.

    [41] F Duncan M Haldane. Model for a quantum hall effect without landau lev- els: Condensed-matter realization of the” parity anomaly”. Physical review letters, 61(18):2015, 1988.
    [42] Chao-Xing Liu, Shou-Cheng Zhang, and Xiao-Liang Qi. The quantum anomalous hall effect: theory and experiment. Annual Review of Condensed Matter Physics, 7:301–321, 2016.
    [43] Gregor Jotzu, Michael Messer, R´emi Desbuquois, Martin Lebrat, Thomas Uehlinger, Daniel Greif, and Tilman Esslinger. Experimental realiza- tion of the topological haldane model with ultracold fermions. Nature, 515(7526):237–240, 2014.
    [44] Charles L. Kane and Eugene J. Mele. Quantum spin hall effect in graphene. Physical review letters, 95 22:226801, 2005.

    [45] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett., 95:146802, Sep 2005.
    [46] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. science, 314(5806):1757–1761, 2006.
    [47] Markus Konig, Steffen Wiedmann, Christoph Brune, Andreas Roth, Hart- mut Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851):766–770, 2007.
    [48] Ivan Knez, Rui-Rui Du, and Gerard Sullivan. Evidence for helical edge modes in inverted inas/gasb quantum wells. Physical review letters, 107(13):136603, 2011.

    [49] Haonan Wang, Qian Niu, and Zhenhua Qiao. Realization of the kane- mele model in XN4-embedded graphene (x = Pt, Ir, Rh, Os). Phys. Rev. B, 104:235157, Dec 2021.
    [50] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B, 76:045302, Jul 2007.

    [51] Barry Bradlyn, Luis Elcoro, Jennifer Cano, Maia G Vergniory, Zhijun Wang, Claudia Felser, Mois I Aroyo, and B Andrei Bernevig. Topological quantum chemistry. Nature, 547(7663):298–305, 2017.
    [52] Feng Tang, Hoi Chun Po, Ashvin Vishwanath, and Xiangang Wan. Compre- hensive search for topological materials using symmetry indicators. Nature, 566(7745):486–489, 2019.
    [53] Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry-based indicators of band topology in the 230 space groups. Nature communications, 8(1):1–9, 2017.
    [54] Tiantian Zhang, Yi Jiang, Zhida Song, He Huang, Yuqing He, Zhong Fang, Hongming Weng, and Chen Fang. Catalogue of topological electronic mate- rials. Nature, 566(7745):475–479, 2019.
    [55] MG Vergniory, L Elcoro, Claudia Felser, Nicolas Regnault, B Andrei Bernevig, and Zhijun Wang. A complete catalogue of high-quality topo- logical materials. Nature, 566(7745):480–485, 2019.
    [56] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L Tomarken, Jason Y Luo, Javier D Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, et al. Correlated insulator behaviour at half- filling in magic-angle graphene superlattices. Nature, 556(7699):80–84, 2018.

    [57] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconduc- tivity in magic-angle graphene superlattices. Nature, 556(7699):43–50, 2018.
    [58] Jeong Min Park, Yuan Cao, Kenji Watanabe, Takashi Taniguchi, and Pablo Jarillo-Herrero. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590(7845):249–255, 2021.
    [59] Georgios A Tritsaris, Stephen Carr, Ziyan Zhu, Yiqi Xie, Steven B Torrisi, Jing Tang, Marios Mattheakis, Daniel T Larson, and Efthimios Kaxiras. Electronic structure calculations of twisted multi-layer graphene superlat- tices. 2D Materials, 7(3):035028, 2020.
    [60] A Gonz´alez-Tudela and J Ignacio Cirac. Cold atoms in twisted-bilayer optical potentials. Physical Review A, 100(5):053604, 2019.
    [61] Zengming Meng, Liangwei Wang, Wei Han, Fangde Liu, Kai Wen, Chao Gao, Pengjun Wang, Cheng Chin, and Jing Zhang. Atomic bose-einstein conden- sate in a twisted-bilayer optical lattice. arXiv preprint arXiv:2110.00149, 2021.
    [62] Junhyun Lee and JH Pixley. Emulating twisted double bilayer graphene with a multiorbital optical lattice. arXiv preprint arXiv:2112.13797, 2021.
    [63] KS Novoselov, o A Mishchenko, o A Carvalho, and AH Castro Neto. 2d materials and van der waals heterostructures. Science, 353(6298):aac9439, 2016.
    [64] Oguzhan Can, Tarun Tummuru, Ryan P Day, Ilya Elfimov, Andrea Damas- celli, and Marcel Franz. High-temperature topological superconductivity in twisted double-layer copper oxides. Nature Physics, 17(4):519–524, 2021.

    [65] Tarun Tummuru, E´tienne Lantagne-Hurtubise, and Marcel Franz. Twisted multilayer nodal superconductors. arXiv preprint arXiv:2202.08790, 2022.
    [66] Kasra Hejazi, Zhu-Xi Luo, and Leon Balents. Noncollinear phases in moir´e magnets. Proceedings of the National Academy of Sciences, 117(20):10721– 10726, 2020.
    [67] Yuto Ashida, Zongping Gong, and Masahito Ueda. Non-hermitian physics. Advances in Physics, 69(3):249–435, 2020.

    [68] Ramy El-Ganainy, Konstantinos G Makris, Mercedeh Khajavikhan, Ziad H Musslimani, Stefan Rotter, and Demetrios N Christodoulides. Non-hermitian physics and pt symmetry. Nature Physics, 14(1):11–19, 2018.
    [69] Shunyu Yao and Zhong Wang. Edge states and topological invariants of non-hermitian systems. Physical review letters, 121(8):086803, 2018.
    [70] VM Martinez Alvarez, JE Barrios Vargas, and LEF Foa Torres. Non- hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Physical Review B, 97(12):121401, 2018.
    [71] Hongfei Wang, Xiujuan Zhang, Jinguo Hua, Dangyuan Lei, Minghui Lu, and Yan-Feng Chen. Topological physics of non-hermitian optics and photonics: a review. Journal of Optics, 2021.
    [72] Alexander Cerjan, Aaswath Raman, and Shanhui Fan. Exceptional con- tours and band structure design in parity-time symmetric photonic crystals. Physical Review Letters, 116(20):203902, 2016.

    [73] Bo Zhen, Chia Wei Hsu, Yuichi Igarashi, Ling Lu, Ido Kaminer, Adi Pick, Song-Liang Chua, John D Joannopoulos, and Marin Soljaˇci´c. Spawning rings of exceptional points out of dirac cones. Nature, 525(7569):354–358, 2015.
    [74] Xiang Zhan, Lei Xiao, Zhihao Bian, Kunkun Wang, Xingze Qiu, Barry C Sanders, Wei Yi, and Peng Xue. Detecting topological invariants in nonuni- tary discrete-time quantum walks. Physical review letters, 119(13):130501, 2017.
    [75] Lei Xiao, Tianshu Deng, Kunkun Wang, Gaoyan Zhu, Zhong Wang, Wei Yi, and Peng Xue. Non-hermitian bulk–boundary correspondence in quantum dynamics. Nature Physics, 16(7):761–766, 2020.
    [76] Mark S Rudner and LS Levitov. Topological transition in a non-hermitian quantum walk. Physical review letters, 102(6):065703, 2009.
    [77] Andrew M Childs. Universal computation by quantum walk. Physical review letters, 102(18):180501, 2009.
    [78] Fenner Harper, Rahul Roy, Mark S Rudner, and SL Sondhi. Topology and broken symmetry in floquet systems. arXiv preprint arXiv:1905.01317, 2019.
    [79] Mark S Rudner and Netanel H Lindner. Floquet topological insulators: from band structure engineering to novel non-equilibrium quantum phenomena. arXiv preprint arXiv:1909.02008, 2019.
    [80] Mark S Rudner and Netanel H Lindner. Band structure engineering and non-equilibrium dynamics in floquet topological insulators. Nature reviews physics, 2(5):229–244, 2020.
    [81] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics- uspekhi, 44(10S):131, 2001.

    [82] Steven R Elliott and Marcel Franz. Colloquium: Majorana fermions in nu- clear, particle, and solid-state physics. Reviews of Modern Physics, 87(1):137, 2015.
    [83] Roman M Lutchyn, Erik PAM Bakkers, Leo P Kouwenhoven, Peter Krogstrup, Charles M Marcus, and Yuval Oreg. Majorana zero modes in superconductor–semiconductor heterostructures. Nature Reviews Materials, 3(5):52–68, 2018.
    [84] Masatoshi Sato and Yoichi Ando. Topological superconductors: a review. Reports on Progress in Physics, 80(7):076501, 2017.

    [85] Martin Leijnse and Karsten Flensberg. Introduction to topological supercon- ductivity and majorana fermions. Semiconductor Science and Technology, 27(12):124003, 2012.
    [86] Ettore Majorana. Teoria simmetrica dell’elettrone e del positrone. Il Nuovo Cimento (1924-1942), 14(4):171, Sep 2008.
    [87] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003.
    [88] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topological quantum computation. Bulletin of the American Mathematical Society, 40(1):31–38, 2003.
    [89] Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum compu- tation. Reviews of Modern Physics, 80(3):1083, 2008.
    [90] David Aasen, Michael Hell, Ryan V Mishmash, Andrew Higginbotham, Jeroen Danon, Martin Leijnse, Thomas S Jespersen, Joshua A Folk, Charles M Marcus, Karsten Flensberg, et al. Milestones toward majorana- based quantum computing. Physical Review X, 6(3):031016, 2016.
    [91] S´ebastien Dusuel, Kai Phillip Schmidt, and Julien Vidal. Creation and manipulation of anyons in the kitaev model. Physical review letters, 100(17):177204, 2008.
    [92] Jon M Leinaas and Jan Myrheim. On the theory of identical particles. Il Nuovo Cimento B (1971-1996), 37(1):1–23, 1977.
    [93] Frank Wilczek. Fractional statistics and anyon superconductivity, volume 5. World scientific, 1990.
    [94] Frank Wilczek. Quantum mechanics of fractional-spin particles. Physical review letters, 49(14):957, 1982.
    [95] Ville Lahtinen and Jiannis Pachos. A short introduction to topological quan- tum computation. SciPost Physics, 3(3):021, 2017.
    [96] Bernard Field and Tapio Simula. Introduction to topological quantum computation with non-abelian anyons. Quantum Science and Technology, 3(4):045004, 2018.
    [97] John Preskill. Topological quantum computation. Lecture notes for physics, 219, 2004.
    [98] Fran¸cois Jaeger, Dirk L Vertigan, and Dominic JA Welsh. On the compu- tational complexity of the jones and tutte polynomials. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 108, pages 35–53. Cambridge University Press, 1990.

    [99] Edward Witten. Quantum field theory and the jones polynomial. Commu- nications in Mathematical Physics, 121(3):351–399, 1989.

    [100] Steven H Simon. Topological quantum: Lecture notes and proto-book. Un- published prototype.[online] Available at: http://www-thphys. physics. ox. ac. uk/people/SteveSimon, 2020.
    [101] Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum algorithm for approximating the jones polynomial. Algorithmica, 55(3):395– 421, 2009.
    [102] Eugenie Samuel Reich. A solid case for Majorana fermions. Nature, 483(7388):132–132, March 2012.
    [103] Jelena Stajic. Looking for chiral majoranas. Science, 367(6473):36–38, Jan- uary 2020.
    [104] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nature Materials, 15(7):733–740, July 2016.
    [105] Dongfei Wang, Lingyuan Kong, Peng Fan, Hui Chen, Shiyu Zhu, Wenyao Liu, Lu Cao, Yujie Sun, Shixuan Du, John Schneeloch, Ruidan Zhong, Genda Gu, Liang Fu, Hong Ding, and Hong-Jun Gao. Evidence for Majorana bound states in an iron-based superconductor. Science, 362(6412):333–335, October 2018.
    [106] Morteza Kayyalha, Di Xiao, Ruoxi Zhang, Jaeho Shin, Jue Jiang, Fei Wang, Yi-Fan Zhao, Run Xiao, Ling Zhang, Kajetan M. Fijalkowski, Pankaj Man- dal, Martin Winnerlein, Charles Gould, Qi Li, Laurens W. Molenkamp, Moses H. W. Chan, Nitin Samarth, and Cui-Zu Chang. Absence of evidence for chiral Majorana modes in quantum anomalous Hall-superconductor de- vices. Science, 367(6473):64–67, January 2020.
    [107] Davide Castelvecchi. Evidence of elusive majorana particle dies - but com- puting hope lives on. Nature, 591(7850):354–355, March 2021.
    [108] Liang Fu and C. L. Kane. Superconducting proximity effect and majo- rana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100:096407, Mar 2008.
    [109] Jay D. Sau, Roman M. Lutchyn, Sumanta Tewari, and S. Das Sarma. Generic new platform for topological quantum computation using semiconductor het- erostructures. Phys. Rev. Lett., 104:040502, Jan 2010.
    [110] Vincent Mourik, Kun Zuo, Sergey M Frolov, SR Plissard, Erik PAM Bakkers, and Leo P Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084):1003– 1007, 2012.
    [111] Hao Zhang, Chun-Xiao Liu, Sasa Gazibegovic, Di Xu, John A Logan, Guanzhong Wang, Nick Van Loo, Jouri DS Bommer, Michiel WA De Moor, Diana Car, et al. Retracted article: Quantized majorana conductance. Na- ture, 556(7699):74–79, 2018.
    [112] Hao Zhang, Chun-Xiao Liu, Sasa Gazibegovic, Di Xu, John A Logan, Guanzhong Wang, Nick van Loo, Jouri DS Bommer, Michiel WA de Moor, Diana Car, et al. Retraction note: Quantized majorana conductance. Nature, 591(7851):E30–E30, 2021.
    [113] Liang Jiang, Takuya Kitagawa, Jason Alicea, A. R. Akhmerov, David Pekker, Gil Refael, J. Ignacio Cirac, Eugene Demler, Mikhail D. Lukin, and Peter Zoller. Majorana fermions in equilibrium and in driven cold-atom quantum wires. Physical Review Letters, 106(22), Jun 2011.
    [114] Sumanta Tewari, S. Das Sarma, Chetan Nayak, Chuanwei Zhang, and P. Zoller. Quantum computation using vortices and majorana zero modes of a px + ipy superfluid of fermionic cold atoms. Phys. Rev. Lett., 98:010506, Jan 2007.
    [115] Z. Shermadini, A. Krzton-Maziopa, M. Bendele, R. Khasanov, H. Luetkens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen, and A. Amato. Coexistence of magnetism and superconductivity in the iron- based compound cs0.8(fese0.98)2. Phys. Rev. Lett., 106:117602, Mar 2011.
    [116] Xiong-Jun Liu, K. T. Law, and T. K. Ng. Realization of 2d spin-orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett., 112:086401, Feb 2014.
    [117] Masatoshi Sato, Yoshiro Takahashi, and Satoshi Fujimoto. Non-abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys. Rev. Lett., 103:020401, Jul 2009.
    [118] Ching-Yu Huang, Jiapei Zhuang, Po-Yao Chang, and Daw-Wei Wang. Two- dimensional paired topological superfluids of rydberg fermi gases, 2021.
    [119] A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos. Interlayer superfluidity in bilayer systems of fermionic polar molecules. Physical Review Letters, 105(21), nov 2010.
    [120] N. T. Zinner, B. Wunsch, D. Pekker, and D.-W. Wang. BCS-BEC crossover in bilayers of cold fermionic polar molecules. Physical Review A, 85(1), jan 2012.

    [121] Mehrtash Babadi and Eugene Demler. Collective phenomena in a quasi-two- dimensional system of fermionic polar molecules: Band renormalization and excitons. Physical Review A, 84(3), sep 2011.
    [122] M. A. Baranov, A. Micheli, S. Ronen, and P. Zoller. Bilayer superfluidity of fermionic polar molecules: Many-body effects. Physical Review A, 83(4), apr 2011.
    [123] Fabio Cinti, Daw-Wei Wang, and Massimo Boninsegni. Phases of dipolar bosons in a bilayer geometry. Physical Review A, 95(2), feb 2017.
    [124] Andrew C. Potter, Erez Berg, Daw-Wei Wang, Bertrand I. Halperin, and Eugene Demler. Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Physical Review Letters, 105(22), nov 2010.
    [125] Ching-Yu Huang, Yen-Ting Lin, Hao Lee, and Daw-Wei Wang. Quantum degenerate majorana surface zero modes in two-dimensional space. Phys. Rev. A, 99:043624, Apr 2019.
    [126] Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355):995–1001, 2017.
    [127] Ching-Yu Huang, Jiapei Zhuang, Po-Yao Chang, and Daw-Wei Wang. Two- dimensional paired topological superfluids of rydberg fermi gases. Phys. Rev. B, 106:024506, Jul 2022.
    [128] Takahiro Morimoto and Akira Furusaki. Weyl and dirac semimetals with Z2 topological charge. Phys. Rev. B, 89:235127, Jun 2014.

    [129] Po-Yao Chang and Piers Coleman. Parity-violating hybridization in heavy weyl semimetals. Phys. Rev. B, 97:155134, Apr 2018.

    [130] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y. Savrasov. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83:205101, May 2011.
    [131] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice: (i). proof by homotopy theory. Nuclear Physics B, 185(1):20–40, 1981.
    [132] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath. Weyl and dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 90:015001, Jan 2018.
    [133] B. B´eri. Topologically stable gapless phases of time-reversal-invariant super- conductors. Phys. Rev. B, 81:134515, Apr 2010.
    [134] Chen Fang and Liang Fu. New classes of topological crystalline insulators having surface rotation anomaly. Science Advances, 5(12):eaat2374, 2019.
    [135] Christina V Kraus, Sebastian Diehl, Peter Zoller, and Mikhail A Baranov. Preparing and probing atomic majorana fermions and topological order in optical lattices. New Journal of Physics, 14(11):113036, 2012.
    [136] Andrew C Potter, Erez Berg, Daw-Wei Wang, Bertrand I Halperin, and Eugene Demler. Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Physical review letters, 105(22):220406, 2010.
    [137] Ryohei Wakatsuki, Motohiko Ezawa, Yukio Tanaka, and Naoto Nagaosa. Fermion fractionalization to majorana fermions in a dimerized kitaev super- conductor. Physical Review B, 90(1):014505, 2014

    QR CODE