研究生: |
劉明享 |
---|---|
論文名稱: |
多流道冷板內流場之PIV觀測 THE FLOW OBSERVATION OF MULTI-CHANNEL COLD PLATE BY PARTICLE IMAGE VELOCIMETRY |
指導教授: |
許文震
Wen-Jenn Sheu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 質點顯像測速儀 、冷板 、不均勻分佈 |
外文關鍵詞: | particle image velocimetry, cold-plate, mal-distribution |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的為利用質點影像測速儀(PIV)來研究不同開孔與出孔對多流道冷板之流場分佈的影響性。相對於單點量測技術無法瞭解整個流場動態變化,質點影像測速儀卻能夠提供整體流場的瞬時觀測,所以它成為現今最熱門的全域流場觀測法。顧名思義,質點影像測速儀是把流場中的質點顆粒在單位時間的運動影像記錄下來,之後再利用自相關性或者交互相關性來計算出位移方向。質點影像測速儀的基本架構為:光線可穿透的透明物件、激發質點粒子用的雷射光、紀錄影像的媒介和對質點影像進行後處理所需要的軟硬體。
在本論文中,除了利用質點影像測速儀來觀察七種不同開孔與出孔的多流道冷板的流動現象,我們也改良了原本的PIV後處理軟體,使得影像資料處理更為簡便快速,也節省了手動輸入的繁瑣時間。另外我們利用統計學上的變異係數來定義流動不均勻分佈的無因次化參數,以便估計不同進出孔冷板所造成的流動不均勻分佈現象。另外由於壓降是流動不均勻分佈所導致的現象,所以我們也量測不同進出孔冷板的進出口壓降。
藉由流動不均勻分佈的無因次化參數跟壓降大小來評估七種不同開孔與出孔的多流道冷板的流動現象,我們可以觀察出兩旁有明顯的回流時壓降值最大。對於幾乎沒有回流現象的多流道冷板,擁有最小的流動不均勻分佈參數跟壓降值,然而擁有最大的流動不均勻分佈參數的多流道冷板,因為衝擊效應使得流動來不及在冷板分佈散開就直接從出口流出去,所以其所對應的流道不均勻分佈差異性也是最大。
The purpose of this study is to examine the influence of inlet locations on the flow distributions of the multi-channel cold-plates by means of particle image velocimetry (PIV). Unlike the point-wise measurement of velocity, PIV is the newest entrant to investigate the field of fluid flow and provides instantaneous global fields of velocity. PIV records the positions of small tracer particles introduced into the flow to follow the local fluid velocity. Thus, PIV represents a quantitative extension of the qualitative flow visualization techniques that have been practiced for several decades. Basically, the requirements for a PIV system are an optically transparent test-section, an illuminating light source (laser), a recording medium (film, CCD, or holographic plate), and a computer for image processing.
Seven inlet configurations (i.e., model-1, model-2, model-3, model-4-normal, model-4-reverse, model-5, and model-6 arrangement) are investigated in this study by means of PIV. In addition to observe the velocity mal-distribution, we also improve the convenience and processing-speed of the PIV post-processing software and introduce a dimensionless parameter(coefficient of variation)to evaluate the velocity mal-distribution and non-uniformity. Furthermore, the pressure drop is the outcome of the velocity mal-distribution such that we measure the corresponding pressure drops for different inlet configurations.
As a result of the comparison between the pressure drop and the velocity mal-distribution for the different inlet locations, we can confirm which model has the better flow distribution. In conclusion, model-1 has the maximum pressure drop due to the apparent re-circulation phenomenon on the both sides of the multi-channel cold plate. In contrast with model-1, the velocity mal-distribution and pressure drop of model-5 are minimum among the different cold plates because there is almost no re-circulation phenomenon in every part of the plate even in high inlet flow rate. However, model-4-normal has the corresponding maximum velocity mal-distribution as the impingement effect of inlet flow causes the most part of working-fluid flowing to the outlet directly.
1.陳永樹,「電子構裝概論」,2000
2.Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., Fellow, IEEE, “Heat Sink Optimization with Application to Microchannels”, IEEE Transactions on Components, Hybrids, and ManufacturingTechnology, vol. 15, No. 5, pp. 832-842, October, 1992.
3.A. Bar-Cohen, “Optimization of vertical pin-fin heat sinks in natural convective heat transfer”, in Proc. Heat transfer 11th IHTC, Vol. 3, Kyonju, Korea, Aug. 23–28, pp.501–506, 1988.
4.A.D. Kraus and A. Bar-Cohen, “thermal analysis and Control of Electronic Equipment”, Hemisphere Publishing Corporation, Washington, DC. (1983).
5.C.Y. Liu and Y.H. Hung, “Heat transfer and flow Friction Characteristics for Compact Cold Plates”, Journal of Electronic Packaging, Vol. 125, pp. 104-113, 2003.
6.G. Hetsroni, A. Mosyak and Z. Segal, “Nonuniform Temperature distribution in Electronic Devices Cooled by flow in Parallel Microchannels”, IEEE Transactions on Components & Packaging Technologies, Vol. 24, No. 1, pp. 16-22, 2001.
7.Qu, W., and I. Mudawar, “analysis of Three-dimensional Heat transfer in Micro-channel Heat Sinks”, int. J. Heat & Mass transfer, Vol. 45, pp. 3973-3985, 2002.
8.J.T. Teng, J.C. Chu, M.S. Liu, C.C. Wang and R. Greif, “investigation of the flow mal-distribution in microchannels,” paper to be presented in ASME congress 2003.
9.A.B. Datta, and A.K. Majumdar, “flow distribution in parallel and reverse flow manifolds”, int. J. Heat & Fluid flow, Vol. 2, No.4, pp.253-262, 1980.
10.L. Hesselink, “Digital Image Processing in flow Visualization”, Annual Review of Fluid Mechanics, Vol. 20, pp. 421-485, 1988.
11.Adrian, R.J., “particle-imaging techniques for experimental fluid mechanics”, Ann Rev. Fluid Mech., Vol.23, pp.261-304, 1991.
12.Meinhart CD, Wereley ST, Gray MHB, “volume illumination for two-dimen sional particle image velocimetry”, MEAS SCI TECHNOL 11 (6): 809-814 JUN 2000.
13.Meinhart CD, Zhang HS, “the flow structure inside a microfabricated inkjet printhead”, J MICROELECTROMECH S 9 (1): 67-75 MAR 2000.
14.Brody JP, Yager P, Goldstein RE, et al., “biotechnology at low Reynolds numbers”, BIOPHYS J 71 (6): 3430-3441 DEC 1996.
15.江松柏,PIV之發展與應用-引擎缸內流場滾轉運動之診測,國立台灣科技大學機械工程系碩士論文,中華民國九一年七月。
16.劉岳明,微質點影像測速儀於熱薄膜擠壓式微幫浦,國立台灣大學應用力學研究所碩士論文,中華民國九一年十月。
17.楊東拾,微質點影像測速儀之發展及其用於微管流場之量測,國立台灣大學應用力學研究所碩士論文,中華民國九十年七月。
18.Ming-Chang Lu, Bing-Chwen Yang, Chi-Chuan Wang, “Numerical study of flow mal-distribution on the flow and heat transfer for multi-channel cold-plates”, Semiconductor thermal Measurement and Management, 2004 IEEE Twentieth Annual IEEE (SEMI-THERM), 9-11 March 2004
19.Kobayshi, T., Yoshitake, Y., “ An automatic Analysis Method for Determining velocity Vector from A Pathline Photograph”, Proc. Int. Symp. On Fluid Control an Measurement, 729-734, Tokyo, Pergamon. 1985.
20.M. Ghrib, and G. Willet, “ Particle Tracking Rivisited in Advances in Fluid Mechanics Measurements ”, ed.M.Gad-el-Hak, Springer-Verlag, Berlin, pp.109-126, 1989.
21.E. A. Cowen, S. G. Monismith, “A Hybrid Digital Particle Tracking Velocimetry Technique”, Experiments in Fluid, Vol. 22, pp. 199-211, 1997.
22.E. Willert and M. Gharib, “ Digital Particle image velocimetry”, Experiments inFluid, Vol. 10, pp. 181-193, 1991.
23.Dabiri and M. Gharib, “Generation mechanisms and sources of vorticity within a spilling breaking wave”, Twenty-First Symposium on Naval Hydrodynamics, Trondheim, Norway, June 24-28, pp. 520-533, 1996.
24.R. Meynart, “Equal velocity Fringes in a Rayleigh-Benard flow by a Speckle Method”, Applied Optics, Vol. 19, No. 19, pp. 1385-1386, 1980.
25.G. A. Reynolds, M. Short, and M. C. Whiffen, “automated Reduction ofInstantaneous flow Field Images”, Optical Engineering, Vol. 24, No. 3, pp.475-479, 1985.
26.Z. H. He, M. A. Sutton, W. F. Ranson, and W. H. Peters, “Two Dimension velocity Measurement by Use of Digital-Speckle correlation Techniques”, Experimental Mechanics, June, pp. 117-121, 1984.
27.J. Nogueira, A. Lecuona, and P. Rodriguez, “Data validation, false vectorscorrection and derived magnitudes calculation on PIV data”, Meas. Sci. Technol, Vol. 8, pp. 1493-1501, 1997.
28.L. Lourenco, A. Krothapalli, “On the Accuracy of velocity Measurements with PIV”, Experiments in Fluid, Vol. 18, pp. 421-428, 1995.
29.Streans. SD. Hush D, “Digital Signal Analysis”, Second edition, Prentice Hell, 1990.
30.張簡秀俊,交替色彩影像測速法於船艉流場量測,國立海洋大學造船工程學系碩士論文,中華民國八十六年七月。
31.Westerweel J (1994), “Efficient detection of spurious vectors in particle image velocimetry data” , Exp Fluids 16: 236∼247.
32.Hart DP (1997), “Sparse array image correlation. Developments in laser techniques and fluid mechanics”, Springer-Verlag Berlin Heildelberg, pp 53∼74.
33.Ming-Chang Lu, Bing-Chwen Yang, Chi-Chuan Wang, “Numerical Study of Flow mal-distribution on the Flow and Heat Transfer for Multi-channel Cold-Plates Semiconductor thermal Measurement and Managemen”, 2004 IEEE Twentieth Annual IEEE (SEMI-THERM), 9-11 March 2004 Pages: 205 – 212.
34.Ajay K. Prasad, “Particle image velocimetry”, Current Science, Vol. 79, No. 1, 10 July 2000.
35.李明靜,河川表面流速與流量非接觸式量測方法之發展及應用,國立成功大學水利及海洋工程學系博士論文,中華民國九十一年七月。
36.吳榮峰,大尺度質點影像量測法之應用-分析水面流場,國立成功大學水利及海洋工程學系碩士論文,中華民國九十一年七月。