研究生: |
徐嘉澤 Hsu, Jia-Ze. |
---|---|
論文名稱: |
以採購紀錄為基礎之供應商評選系統-以明昌工業為例 Supplier Selection System Based on Purchase Records |
指導教授: |
侯建良
Hou, Jiang-Liang |
口試委員: |
江育民
楊士霆 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 供應商評選 、粒子群演算法 |
外文關鍵詞: | Supplier selection, Particle swarm algorithm |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當企業面臨緊急訂單或增加原訂單訂購量等相關問題時,若第一線之業務人員無法及時且準確地予以回應,除了企業無法賺取額外利益外,部分產業甚至會導致無法衡量的損失(如企業關係等)。為掌握產能並使獲益最大化,許多企業乃從生產、採購等各面向進行分析,以利於第一線之業務人員能在有限的時間下選擇正確之決策。而此問題牽連層面相當廣泛;本研究欲從採購方面著手進行分析,以確保接收緊急訂單時,採購單位能及時取得料件並投入生產。為減少因供應商供貨不確定性所導致之負面影響,採購人員大多由過往供應其所需之料件供應商中進行挑選,其往往需花費大量的時間逐一查閱歷史採購紀錄,以進一步掌握採購人員欲關注之供應商評選指標。此外,相同的供應商評選指標對於不同的採購人員而言其重要度往往不盡一致,導致不同採購人員間之採購績效表現較不穩定。
為解決上述問題,本研究乃期望發展一套「以採購紀錄為基礎之供應商評選模式」,以使採購人員於採購料件時,可透過此系統快速地掌握欲採購料件之供應商交貨能力,並做為評選供應商之依據。此模式乃包括「供應商交貨能力判定及視覺化」方法論與「供應商交貨能力重要度衡量」方法論兩部分。於「供應商交貨能力判定及視覺化」方法論,本研究乃先擷取歷史採購紀錄中之衡量供應商交貨能力所需資料,並計算衡量供應商交貨能力之代表性指標;接著,根據採購人員是否具交貨能力評分標準決定供應商於各交貨能力個別指標之評分方式,並衡量採購人員對於各供應商交貨能力個別指標之重要度,以取得判定供應商交貨能力之個別指標與綜合交貨能力之依據。之後,本研究乃計算供應商之各交貨能力個別指標與綜合指標,並以視覺化之方式呈現供應商交貨能力。而於「供應商交貨能力重要度衡量」方法論,採購人員可基於「供應商交貨能力判定及視覺化」方法論所判定之供應商綜合指標主觀提出理想之供應商綜合指標之評比值,本研究乃藉粒子群演算法之方式推得一可反映專家意見之供應商交貨能力重要度,以作為調整「以採購紀錄為基礎之供應商評選模式」交貨能力重要度之機制,使其所判定之供應商交貨能力更具採購人員之觀點。(I)
When a company is faced with related issues such as urgent orders or increasing the original order quantity, if the front-line business personnel cannot respond in a timely and accurate manner, in addition to the company’s inability to earn additional benefits, some industries may even cause unmeasurable losses. In order to grasp the production capacity and maximize the benefits, many companies analyze the production, procurement and other aspects, so that the business personnel can make the correct decision in a limited time. This problem has a wide range of implications. This research intends to analyze from the procurement aspect to ensure that when receiving urgent orders, the purchasing unit can obtain materials and put them into production in time. In order to reduce the negative impact caused by supplier uncertainty, most purchasers select from the suppliers of materials they need in the past, and they often need to spend a lot of time reviewing historical procurement records one by one to further understand selection indicators that purchasers want to pay attention to. In addition, the same supplier selection index for different procurement personnel is often not equally important, resulting in unstable procurement performance among different procurement personnel. This research aims to develop a "supplier selection model based on purchase records" so that when purchasing materials, purchasers can quickly grasp the capabilities of suppliers who provide the materials through this system, and make a beneficial to the enterprise's selection decision.(II)
1. Dickson, G. W., 1966, “An Analysis of Vendor Selection Systems and Decisions,” Journal of Purchasing, Vol. 2, No. 1, pp. 5-17.
2. Goffin, K., Szwejczewski, M. and New, C., 1997, “Managing Suppliers: When Fewer Can Mean More,” International Journal of Physical Distribution & Logistics Management, Vol. 27, No. 7, pp. 422-436.
3. Cheraghi, S. H. and Dadashzadeh, M., 2011, “Critical Success Factors for Supplier Selection: An Update,” Journal of Applied Business Research, Vol. 20, No. 2, pp. 91-108.
4. Choi, T. Y. and Hartley, J. L., 1996, “An Exploration of Supplier Selection Practices Across the Supply Chain,” Journal of Operations Management, Vol. 14, No. 4, pp. 333-343.
5. Patton, W. E., 1996, “Use of Human Judgment Models in Industrial Buyers’ Vendor Selection Decisions,” Industrial Marketing Management, Vol. 25, No. 2, pp. 135-139.
6. Yahya, S. and Kingsman, B., 1999, “Vendor Rating for An Entrepreneur Development Programme: A Case Study Using the Analytic Hierarchy Process Method,” Journal of the Operational Research Society, Vol. 50, No. 9, pp. 916-930.
7. Rathore, C. S. and Agarwal, S., 2016, “Supplier Selection Process in Supply Chain Management,” International Journal of Engineering Sciences & Research Technology, Vol. 5, No. 9, pp. 916-930.
8. Riccardo, D. and Mininno, V., 2003, “Supplier Selection Using A Multi-Criteria Decision Aid Method,” Journal of Purchasing & Supply Management, Vol. 9, pp. 177-187.
9. Hruška, R., Babić, D. and Průša, P., 2013, “The Use of AHP Method for Selection of Supplier,” Journal of Transport, Vol. 29, No. 2, pp. 177-187.
10. Udakanjalee, H. I., Wijayanayake, A. N. and Niwunhella, D. H. H., 2021, “Effective Supplier Selection Using ANP,” Proceedings of the International Conference on Industrial Engineering and Operations Management Singapore, pp. 1-11.
11. Surjandari, I., Sudarto, S. and Anggarini, S., 2010, “Supplier Selection in JIT Automotive Industry: A Multivariate Approach,” Operations and Supply Chain Management, Vol. 3, No. 2, pp. 1-11.
12. Bayazit, O., Karpak, B. and Yagci, A., 2006, “A Purchasing Decision: Selecting a Supplier for a Construction Company,” Journal of Systems Science and Systems Engineering, Vol. 15. No. 2, pp. 217-231.
13. Galankashi, M. R., Helmi, S. A. and Hashemzahi, P., 2016, “Supplier Selection in Automobile Industry: A Mixed Balanced Scorecard–Fuzzy AHP Approach,” Alexandria Engineering Journal, Vol. 55. pp. 93-100.
14. Wen, U. P. and Chi, J. M., 2010, “Developing Green Supplier Selection Procedure: A DEA Approach,” 2010 IEEE 17th International Conference on Industrial Engineering and Engineering Management, pp. 70-74.
15. Hashemi, S. H., Karimi, A. and Tavana, M., 2015, “An Integrated Green Supplier Selection Approach with Analytic Network Process and Improved Grey Relational Analysis,” International Journal of Production Economics, Vol. 159, pp. 178-191.
16. Kumar, R., Padhi S. S. and Sarkar, A., 2019, “Supplier Selection of an Indian Heavy Locomotive Manufacturer: An Integrated Approach Using Taguchi Loss Function, TOPSIS and AHP,” IIMB Management Review, Vol. 31, pp. 78-90.
17. Kuo, R. J., Huang, Y. C. and Hong, S. Y., 2009, “Integration of Particle Swarm Optimization-Based Fuzzy Neural Network and Artificial Neural Network for Supplier Selection,” Applied Mathematical Modelling, Vol. 34, pp. 3976-3990.
18. Kar, A. K., 2015, “A Hybrid Group Decision Support System for Supplier Selection Using Analytic Hierarchy Process, Fuzzy Set Theory and Neural Network,” Journal of Computational Science, Vol. 6, pp. 23-33.
19. Kuo, R. J., Wang, Y. C. and Tien, F. C., 2010, “Integration of Artificial Neural Network and MADA Methods for Green Supplier Selection,” Journal of Cleaner Production, Vol. 18, pp. 1161-1170.