研究生: |
汪知齡 Wang, Chih-Lin |
---|---|
論文名稱: |
第一原理探討人工光合作用陰極金屬有機框架還原CO2產製甲醇 First Principles on CO2 Reduction to Methanol at Metal Organic Frameworks in Artificial Photosynthesis Cathode |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
董瑞安
Doong, Ruey-an 張博凱 Chang, Bor-Kae 林洸銓 Lin, Kuang-Chuan 三政鴻 San, Cheng-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 人工光合作用 、二氧化碳 、甲醇 、陰極 、還原反應 、全球暖化 |
外文關鍵詞: | Artificial Photosynthesis, CO2, Methanol, Cathode, Reduction Reaction, Global Warming |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用量子模擬探討人工光合作用中陰極催化二氧化碳(CO2)還原成碳氫燃料的過程,希望能詳盡的了解整個反應,並找出會遇到的問題,以求改善方案。選用的陰極材料為摻鋁的紫質基金屬有機框架(Al-PMOF),此類催化劑在研究中被證實能夠將二氧化碳催化還原為甲酸(HCOOH)或者甲醇(CH3OH);主要使用的模擬軟體為根據計算量子化學設計的Gaussian09,輔以B3LYP理論及基底函數6-31G(d,p);次要的模擬軟體則是由蒙地卡羅理論所設計的Adsorption Locator。
研究中,透過Adsorption Locator預測加入的二氧化碳與氫離子(H+)的位置,並透過Gaussian09對預測所得到的結構做更加嚴謹的結構最佳化、過渡態計算、內反應座標確認,最終我們確定了Al-PMOF催化二氧化碳還原甲酸以及甲醇的反應路徑及其各步驟反應速率常數:催化劑Al-PMOF的最佳化結構幾何誤差與實驗值相比最大不超過3%且光學性質相符;二氧化碳在催化初期會被折彎成具有112.424o角度的結構,對於降低結構穩定性與增加催化發生的可能性有重要的影響;整個催化過程為釋能反應,由吸附二氧化碳並催化至析出甲酸的結構共需提供3.306 eV的能量並會釋放出1.19 Ha的能量,至析出甲醇則需提供7.315 eV的能量,並會釋放出3.60 Ha的能量;在加入第四個氫離子催化完成後,會產生一個水分子,若其脫離反應區,後續的催化便會難以生成穩定的產物;整個反應中,加入第一個(k2 = 2.233×10-11 s-1)、第五個(k6 = 2.055×10-10 s-1)氫離子,以及析出甲醇(k8 = 3.736×10-10 s-1)時的速率常數較小。
最後本研究認為欲改善現下催化二氧化碳成甲醇時所遇到效率低落的問題,除了尋找更有效的陰極,亦可以從以下部分著手:(1)設計能夠通入二氧化碳且能同時保持陰極反應區流場穩定的反應裝置,確保水分子不會脫離反應區致使反應無法順利進行;(2)各步驟間反應速率常數的差異略大,尋找有效的助催化劑出來改善反應速率較慢步驟亦可大幅提升整體效率。
This thesis aims to use quantum simulation to study the process of CO2 reduction to hydrocarbon fuel at the cathode in the artificial photosynthesis. The selected cathode catalyst is porphyrin-based metal organic framework (Al-PMOF). The main simulation software uses Gaussian09, which is designed according to the computational quantum chemistry. In the first principles calculation, B3LYP theory and the basis function 6-31G(d,p) were chosen. The secondary simulation software is the Adsorption Locator which based on Monte Carlo algorithms and empirical potential functions.
We simulated the reaction pathway and calculated the reaction rate constant (k) of the CO2 reduction reaction to HCOOH and CH3OH at the Al-PMOF catalyst. The geometric error of the Al-PMOF model is less than 3% compared with the experimental results. All the optical properties are consistent with measurements. CO2 will be bent into a structure with an angle of 112.424o at the initial stage of catalysis, which has an important influence on reducing structural stability and increasing the possibility of catalytic reaction. The overall reaction is exergonic that when producing HCOOH, 3.306 eV is required and 1.190 Ha will be released. When producing CH3OH, 7.315 eV is required and 3.600 Ha will be released. When the fourth hydrogen ion is catalyzed, a water molecule is produced. If the water molecule leaves away the reaction zone, it will be difficult to produce stable products later. The first (k2 = 2.233×10-11 s-1), fifth (k6 = 2.055×10-10 s-1) hydrogen ions and CH3OH precipitation (k8 = 3.736×10-10 s-1) steps have the slowest reaction rate constant, which is designated as the rate determined step. In summary, this study proposes two ways to improve the efficiency of CH3OH production from CO2: (a) Design a stable flow field reactor to prevent H2O molecules from leaving the reaction zone; (b) Look for some effective co-catalysts to help the reaction complete more quickly.
[1] W. S. Broecker, “Unpleasant Surprises in the Greenhouse?” Nature, 328, pp 123-126, 1987.
[2] Nation Oceanic and Atmospheric Administration Website
(https://www.esrl.noaa.gov/gmd/ccgg/trend).
[3] Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, and J. Tang, “Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems,” Chem. Rev., 118, pp 5201-5241, 2018.
[4] J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah, and G. K. Surya Prakash, “Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst,” J. Am. Chem. Soc., 138, pp 778-781, 2016.
[5] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, A. P. Frank, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, “The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts,” Science, 336, pp 893-897, 2012.
[6] A. O. Yazaydın, R. Q. Snurr, T. H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin,| P. Jakubczak, M. Lanuza, D. B. Galloway, J. J. Low, and R. R. Willis, “Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach,” J. Am. Chem. Soc., 131, pp 18198-18199, 2009.
[7] R. Li, W. Zhang, and K. Zhou, “Metal-Organic‐Framework‐Based Catalysts for Photoreduction of CO2,” Adv. Mater., 30, e1705512. , 2018.
[8] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, “Photochemical and Photoelectrochemical Reduction of CO2,” Annu. Rev. Phys. Chem., 63, pp 541-569, 2012.
[9] W. Tu, Y. Zhou, and Z. Zou, “Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects,” Adv. Mater., 26, pp 4607-4626, 2014.
[10] M. Chino, L. Leone, G. Zambrano, F. Pirro, D. D’Alonzo, V. Firpo, D. Aref, L. Lista, O. Maglio, F. Nastri, A. Lombardi, “Oxidation Catalysis by Iron and Manganese Porphyrins Within Enzyme‐Like Cages,” Biopolymers, 109, e23107, 2018.
[11] PubChem Website for Chemistry Database
(https://pubchem.ncbi.nlm.nih.gov).
[12] K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry, and S. R. Wilson, “Microporous Porphyrin Solids,” Acc. Chem. Res., 2005, 38, pp 283-291.
[13] M. H. Xie, X. L. Yang, Y. He, J. Zhang, B. Chen, and C. D. Wu, “Highly Efficient C-H Oxidative Activation by a Porous MnIII-Porphyrin Metal-Organic Framework under Mild Conditions,” Chemistry, 19, pp 14316-14321, 2013.
[14] D. Feng, H. L. Jiang, Y. P. Chen, Z. Y. Gu, Z. Wei, and H. C. Zhou, “Metal-Organic Frameworks Based on Previously Unknown Zr8/Hf8 Cubic Clusters,” Inorg. Chem., 52, pp 12661-12667, 2013.
[15] Z. Y. Gu, J. Park, A. Raiff, Z. Wei, and H. C. Zhou, “Metal-Organic Frameworks as Biomimetic Catalysts,” Chem. Cat. Chem., 6, pp 67-75, 2014.
[16] X. L. Yang, M. H. Xie, C. Zou, Y. He, B. Chen, M. O’Keeffe, and C. D. Wu, “Porous Metalloporphyrinic Frameworks Constructed from Metal 5,10,15,20-Tetrakis(3,5-biscarboxylphenyl)Porphyrin for Highly Efficient and Selective Catalytic Oxidation of Alkylbenzenes,” J. Am. Chem. Soc., 134 , pp 10638–10645, 2012.
[17] K. Wang, D. Feng, T. F. Liu, J. Su, S. Yuan, Y. P. Chen, M. Bosch, X. Zou, and H. C. Zhou, “A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs,” J. Am. Chem. Soc., 136, pp 13983-13986, 2014.
[18] J. W. Maina1, C. P. Gonzalo, L. Kong, J. Schütz, M. Hill, L. F. Dumée1, “Metal Organic Framework Based Catalysts for CO2 Conversion,” Materials Horizons, 4, pp 345-361, 2017.
[19] I. Goldberg, “Metalloporphyrin Molecular Sieves,” Chemistry, 6, pp 3863-3870, 2000.
[20] M. E. Kosal, J. H. Chou, S. R. Wilson and K. S. Suslick, “A Functional Zeolite Analogue Assembled from Metalloporphyrins,” Nature Materials, 1, pp 118-121, 2002.
[21] I. J. Kang, N. A. Khan, E. Haque, and S. H. Jhung, “Chemical and Thermal Stability of Isotypic Metal-Organic Frameworks: Effect of Metal Ions,” Chemistry, 17, pp 6437-6442, 2011.
[22] A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, and M. J. Rosseinsky, “A Water‐Stable Porphyrin‐Based Metal–Organic Framework Active for Visible‐Light Photocatalysis,” Angew. Chem. Int. Ed., 51, pp 7440-7444, 2012.
[23] Y. Liu, Y. Yang, Q. Sun, Z. Wang, B. Huang, Y. Dai, X. Qin, and X. Zhang, “Chemical Adsorption Enhanced CO2 Capture and Photoreduction over a Copper Porphyrin Based Metal Organic Framework,” ACS Appl. Mater. Interfaces, 5, pp 7654-7658, 2013.
[24] N. Sadeghi, S. Sharifniaa and T. O. Do, “Enhanced CO2 Photoreduction by a Graphene–Porphyrin Metal–Organic Framework under Visible Light Irradiation,” J. Mater. Chem. A, 6, pp 18031-18035, 2018.
[25] National Aeronautics and Space Administration Website
(https://climate.nasa.gov/vital-signs/global-temperature/).
[26] B. Shaffer, “A Guide to the Application of Energy Data for Intelligence Analysis,” Studies in Intelligence, 61, pp 43-52, 2017.
[27] H. Sun, “COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds,” J. Phys. Chem. B, 102, pp 7338-7364, 1998.
[28] A. C. Damaskt, G. J. Drenes, and V. G. Werzzn, “Calculation of Migration and Binding Energies of Mono-, Di-, and Trivacancies in Copper with the Use of a Morse Function,” Phys. Rev., 113, pp 781-784, 1959.
[29] N. Metropolis and S. Ulam, “The Monte Carlo Method,” JASA, 44, pp 335-341, 1949.
[30] A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Phys. Rev. A, 38, pp 3098-3100, 1988.
[31] A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, pp 5648-5652, 1993.
[32] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Phys. Rev. B, 37, pp 785-789, 1988.
[33] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 98, pp 11623-11627, 1994.
[34] A. C. Hurley, L. J. John and J. A. Pople, “The Molecular Orbital Theory of Chemical Valency XVI. A Theory of Paired-Electrons in Polyatomic Molecules,” Proc. R. Soc. A, 220, pp 446-455, 1953.
[35] V. Aquilanti, K. C. Mundim, M. Elango, S. Kleijn, T. Kasai, “Temperature Dependence of Chemical and Biophysical Rate Processes: Phenomenological Approach to Deviations from Arrhenius Law,” Chem. Phys. Lett., 498, pp 209-213, 2010.
[36] H. Bernhard Schlegel, Geometry Optimization on Potential Energy Surfaces, in Modern Electronic Structure Theory, ed. D. R. Yarkony, World Scientific, 1994, p 463.
[37] H. Eyring, “The Activated Complex and the Absolute Rate of Chemical Reactions,” Chem. Rev., 17, pp 65-77, 1935.
[38] G. Lente, I. Fabiana and A. J. Poe, “A Common Misconception about the Eyring Equation,” New J. Chem., 29, pp 759-760, 2005.
[39] H. Eyring, “Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates,” J. Chem. Phys., 4, pp 283-291, 1936.
[40] V. H. Carvalho-Silva, V. Aquilanti, H. C. B. de Oliveira, and K. C. Mundim, “Deformed Transition-State Theory: Deviation from Arrhenius Behavior and Application to Bimolecular Hydrogen Transfer Reaction Rates in the Tunneling Regime,” J. Comput. Chem., 38, pp 178-188, 2017.
[41] P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, “The Complete Active Space SCF (CASSCF) Method in a Newton-Raphson Formulation with Application to the HNO Molecule,” J. Chem. Phys., 74, pp 2384-2396, 1981.
[42] J. Zheng and M. J. Frisch, “Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians,” J. Chem. Theory Comput., 13, pp 6424-6432, 2017.
[43] A. Heyden, A. T. Bell, and F. J. Keil, “Efficient Methods for Finding Transition States in Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method,” J. Chem. Phys., 123, p 224101, 2005.
[44] K. Fukui, “A Formulation of the Reaction Coordinate,” J. Phys. Chem., 74, pp 4161-4163, 1970.
[45] K. Ishida, K. Morokuma, and A. Komornicki, “The Intrinsic Reaction Coordinate. An Ab Initio Calculation for HNC→HCN and H-+CH4→CH4+H-,” J. Chem. Phys., 66, pp 2153-2156, 1977.
[46] C. Gonzalez, and H. B. Schlegel, “An Improved Algorithm for Reaction Path Following,” J. Chem. Phys., 90, pp 2154-2161, 1989.
[47] C. Gonzalez and H. B. Schlege, “Reaction Path Following In Mass-Weighted Internal Coordinates,” J. Phys. Chem., 94, pp 5523-5527, 1990.
[48] J. Ischtwan, and M. A. Collins, “Determination of the Intrinsic Reaction Coordinate: Comparison of Gradient and Local Quadratic Approximation Methods,” J. Chem. Phys., 89, pp 2881-2885, 1988.
[49] V. Bakken, J. M. Millam, and H. B. Schlegel, “Ab Initio Classical Trajectories on the Born–Oppenheimer Surface: Updating Methods for Hessian-Based Integrators,” J. Chem. Phys., 111, pp 8773-8777, 1999.
[50] J. G. Santaclara, F. Kapteijn, J. Gascon and M. A. van der Veen, “Understanding Metal-Organic Frameworks for Photocatalytic Solar Fuel Production,” CrystEngComm, 19, pp 4118-4125, 2017.
[51] T. Rhauderwiek, S. Waitschat, S. Wuttke, H. Reinsch, T. Bein, and N. Stock, “Nanoscale Synthesis of Two Porphyrin-Based MOFs with Gallium and Indium,” Inorg. Chem., 55, pp 5312-5319, 2016.
[52] D. Kumar, B. Mishra, K. P. Chandrashekar, S. B. Khandagale, M. P. Tantak, A. Kumar, K. Akamatsu, E. Kusaka, and T. Ito, “Synthesis of Meso-(4’-cyanophenyl) Porphyrins: Efficient Photocytotoxicity Against A549 Cancer Cells and Their DNA Interactions,” RSC Adv., 5, pp 53618-53622, 2015.
[53] Royal Society of Chemistry Database: ChemSpider
(http://www.chemspider.com/)
[54] J. Albo, M. Alvarez-Guerra, P. Castañoa and A. Irabien, “Towards the Electrochemical Conversion of Carbon Dioxide into Methanol,” Green Chem.,17, pp 2304-2324, 2015.