簡易檢索 / 詳目顯示

研究生: 賴勇成
Lai, Yung-Cheng
論文名稱: 利用拉曼光譜與電子背向繞射系統探討石墨與基板的交互作用
Raman and EBSD characterization of the graphene-substrate interaction
指導教授: 邱博文
Chiu, Po-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 102
中文關鍵詞: 石墨烯基板交互作用拉曼電子背向繞射
外文關鍵詞: graphene, substrate interaction, Raman, EBSD
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提升積體電路的效能,進年來基本元件一直朝著微縮的方向前進,但是進步到幾十奈米的線寬的同時,許多製程技術也漸漸浮現問題。在這無法再繼續縮小的情況下,尋找新的材料以解決目前的困境就成了另一個解決方法,而近年來很熱門的單層石墨(graphene)就是其中最具潛力的材料。單層石墨是厚度只有一個原子層的二維系統,也是目前已知材料中唯一以二維方式穩定存在的材料,其特殊的能帶也讓科學界掀一起股研究單層石墨的熱潮。

    最早的單層石墨製備方式為機械剝離法 (mechanical exfoliation),雖然此法製備出來的石墨表面很少有雜質,十分利於後續的製程步驟,但是這種方法耗時且人力須求較高,因此利用化學氣相沈積法 (Chemical vapor deposition, CVD)來製備大面積單層石墨的方法也逐漸興起,在論文中我們利用鎳薄膜 (Ni thin film)及鎳錠(Ni pillar)做為催化劑來成長單層石墨,接續著之前成長的經驗,我們已經可以成長大量高品質的單層與雙層石墨。

    為了更加了解以鎳為催化劑成長的石墨特性,我們利用拉曼光譜分析來了解鎳對石墨可能造成的影響,不僅如此,為了確定石墨與基板間交互作用的情況,我們也在轉移基板後對同一點的石墨進行拉曼光譜的檢測,同時我們也利用電子背向繞射系統來分析鎳的晶向,讓我們能更深入的探討石墨的成長機製與成長時的情況。


    第一章 緒論 1.1 研究動機 1.1.1 目前半導體技術與發展限制 1.2 利用新的材料以解決目前困境 1.2.1 奈米碳管 1.3 石墨 1.3.1 單層與雙層石墨 1.3.2 石墨的應用 第二章 單層石墨的製備方法 2.1 機械剥離法 2.2 熱裂解磊晶成長於碳化矽基板 2.3 氧化還原法 2.4 催化分解 2.5 化學氣相沉積法 2.5.1 以化學氣相沉法成長單層石墨的基本原理 2.5.2 以釕當催化劑的CVD成長 2.5.3 以鎳為催化劑的CVD成長 2.5.4 以銅為催化劑的CVD成長 第三章 石墨層數的判定法 3.1 原子力顯微鏡 3.2 穿透式電子顯微鏡 3.3 拉曼光譜 3.3.1 拉曼光譜的原理 3.3.2 拉曼光譜對石墨偵測的結果 3.3.3 G peak 3.3.4 D與D’ peak 3.3.5 2D peak 3.3.6 聲子的共振頻率 3.3.7 AB stacking 雙層石墨的拉曼圖譜 3.3.8 拉曼光譜與石墨層數的關係 3.3.9 單層石墨的拉曼光譜 第四章 化學氣相沉積法長成的石墨與其特性 4.1 以鎳薄膜為催化劑成長 4.2 以鎳錠為催化劑的成長 4.3 CVD成長石墨的拉曼光譜分析 4.3.1 單層與雙層石墨的拉曼光譜 4.3.2 特殊2D peak的拉曼光譜 4.3.3 基板摻雜效應 4.3.4 應力與應變效應 4.3.5 電子背向繞射系統 4.3.6 CVD成長石墨的討論 第五章 結論與未來展望

    {1} J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”, Phys. Rev., {74}, 230, (1948).
    {2} S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, {363}, 603, (1993).
    {3} J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, {20}, 323202, (2008).
    {4} K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, {306}, 666-669, (2004).
    {5} C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, {312}, 1191-1196, (2006).
    {6} X.Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotech., {3}, 538-542, (2008).
    {7} James D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology - Fundamentals, Practice and Modeling, Pearson Education International, (2000).
    {8} P. W. Sutter, J.-I. Flege and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater., {7}, 406-411, (2008).
    {9} A. N. Obraztsov, E. A. Obraztsov, A. V. Tyurnin and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon, {45}, 2017-2021, (2007).
    {10} A. Reina, X. Jia, J Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., {9}, 30-35, (2009).
    {11} A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res., {2}, 509-516, (2009).
    {12} K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, {457}, 706-710, (2009).
    {13} S. J. Chae, F. G \H{u}nes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee, “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation”, Adv. Mater., {21}, 1-6, (2009).
    {14} X. Li, W.i Cai,. J. An, S.g Kim, J. Nah, D. Y, R. Piner, A. Velamakanni, I. Jung, E.l Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 1171245, (2009).
    {15} J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Elsevier, (2003).
    {16} N. B. Colthup, L. H. Daly and S. E. Wiberley, “Introduction to Infrared and Raman Spectroscopy”, Academic Press, 1990.
    {17} M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., {409}, 47-99, (2005).
    {18} S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, {362}, 2271–2288, (2004).
    {19} A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, {143}, 47-57, (2007).
    {20} R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, “Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering”, Phys. Rev. Lett., {88}, 027401, (2002).
    {21} B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, {74}, 075404, (2006).
    {22} C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite”, Phys. Rev. Lett., {85}, 5214, (2000).
    {23} A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., {97}, 187401, (2006).
    {24} S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, “Kohn Anomalies and Electron-Phonon Interactions in Graphite”, Phys. Rev. Lett., {93}, 185503, (2004).
    {25} Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai and C. Oshima, “Atomic structure of monolayer graphite formed on Ni (111)”, Surface Science, {374}, 61-64, (1997).
    {26} G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, {71}, 075402, 2004.
    {27} A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotech., {3}, 210-215, (2008).
    {28}P. Sutter,* M. S. Hybertsen, J. T. Sadowski, and E. Sutter, “Electronic Structure of Few-Layer Epitaxial Graphene on Ru(0001)” , Nano letters, {9}, No. 7, 2654-2660, (2009).
    {29} Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening”, ACS Nano, {2}, 2301-2305, (2009).
    {30} N. Ferralis, R. Maboudian and Carlo Carraro, “Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)”, Phys. Rev. Lett., {101}, 156801, (2008).
    {31} H. B. Lyon and G. A. Somorjai, “Low Energy Electron Diffraction Study of the Clean (100), (111), and (110) Faces of Platinum”, J. Chem. Phys., {46}, 2539, (1967).
    {32} T. G. Kollie, “Measurement of the thermal expansion coefficient of nickel from 300 to 1000K and determination of the power law constant near the Curie temperature”, Phys. Rev. B, {16}, 4872-4881, (1977).
    {33} N. Mounet and N. Marzari, “First-principles determination of the structural, vibrational and thermodynamic
    properties of diamond, graphite, and derivatives”, Phys. Rev. B, {71}, 205214, (2005).
    {34} 黃宏勝, 林麗娟, “FE-SEM/CL/EBSD 分析技術簡介”, 工業材料雜誌 - 檢測技術在奈米科技之應用專題, {201}, 99-108, (2003).
    {35} Frank Abild-Pedersen and Jens K. Nørskov, “Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory
    calculations”, Phys. Rev. B, {73}, 115419, (2006).
    {36} N. Mizuochi and M. Ogura, “Hydrogen passivation effects on carbon dangling bond defects accompanying a nearby hydrogen atom in p-type CVD diamond”, Physica B, {376}, 300, (2006).
    {37} D. D. L. Chung, “Review graphite”, Journal of Materials Science, {37}, 1475, (2002).
    {38} S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., {97}, 036803, (2006).
    {39} B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, {74}, 075404, (2006).
    {40} A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., {97}, 187401, (2006).
    {41} J. C. Meyer, A. K. Geim, M. I. Katsnelsond, K. S. Novoselovc, D. Obergfelle, S. Rothe, C. Girita and A. Zettla, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, {143}, 101-109, (2007).
    {42} P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., {91}, 063124, (2007).
    {43} W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, {143}, 92-100, (2007).
    {44} G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotech., {3}, 270-274, (2008).
    {45} J. Yan1, Y. Zhang1, P. Kim1, and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene ”, Phys. Rev. Lett., {98}, 166802, (2007)
    {46} G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, {71}, 075402, (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE