研究生: |
李昱嶙 |
---|---|
論文名稱: |
mPEG-polyesters溫度敏感型水膠製備及其不同比例之酯類單體組成對於水膠系統性質的影響之研究 The study of thermosensitive mPEG-polyester hydrogels: Synthesis and characteristic of diblock copolymers with different composition of ester monomers on hydrogel system |
指導教授: | 朱一民 |
口試委員: |
朱一民
鍾次文 魏毓宏 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 聚酯類 、團聯共聚物 、溫度敏感型水膠 、降解 、PLGA 、PCLA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討聚乙二醇-聚酯類雙團聯共聚物(mPEG-PLGA及mPEG-PCLA)之物理、化學性質,在固定親水鏈段與疏水鏈段之分子量比例為550/1405的原則下,調整其疏水鏈段中單體與單體之間的莫耳比例,找出作為溫度敏感型水膠材料之最適化條件。實驗利用開環聚合反應製備出雙團聯共聚物,在mPEG-PLGA系列中依疏水鏈段單體比例不同分為L10、L8G2、L6G4、L4G6、L2G8及G10。而在mPEG-PCLA系列當中,也依單體比例不同分為L10、L8C2、L6C4、L4C6、L2C8及C10。結果顯示,L10、L4G6、L2G8、L2C8、G10、C10因其疏水性或結晶性而不溶於水,其餘共聚物L8G2、L6G4、L8C2、L6C4、L4C6於水溶液中皆可形成奈米微胞,臨界微胞濃度小於0.1mg/ml,粒徑皆在100nm以下。然而mPEG-PLGA系列中15wt%水溶液之成膠溫度為15-50℃,成膠範圍很廣;mPEG-PCLA系列則是降解速度較慢,其中L4C6及L6C4,在降解後之第30天,其重量還有原本的60%以上。其中,L6C4為最適化條件,除細胞毒性測試中,顯示20wt%水膠之良好生物相容性,亦在軟骨修復之動物實驗中,展現其水膠載體優良之特性。縱合上述之研究成果,相信此一mPEG-PCLA系列之共聚合物,適合用於原位注射成膠之藥物釋放系統。
The objective of this study is to discuss the thermo responsiveness properties of methoxy poly(ethylene glycol)-polyesters (mPEG-PLGA, mPEG-PCLA) diblock copolymers. Without changing the hydrophilic/hydrophobic segment ratio of the copolymer, the molar ratio of ester monomers was adjusted to obtain better formulation for a thermal-sensitive hydrogel. Diblock copolymers were synthesized using ring-opening polymerization. For the mPEG-PLGA series, L10, L8G2, L6G4, L4G6, L2G8, and G10 were prepared corresponding to LA/GA ratios of 100/0, 80/20, 60/40, 20/80, and 0/100, respectively. For the mPEG-PCLA series, L10, L8C2,L6C4, L4C6, L2C8, and C10 were prepared corresponding to LA/CL ratios of 100/0, 80/20, 60/40, 20/80, and 0/100 respectively. Results showed that L10, L4G6, L2G8, L2C8, C10 and G10 were insoluble in water due to high crystallinity and hydrophobicity. L8G2, L6G4, L8C2, L6C4, and L4C6 formed nanoparticles with sizes under 100 nm and critical micelle concentrations below 0.1 mg/mL in aqueous solution. Also, it was observed that 15 wt% (w/v) mPEG-PLGA displayed a wide gelation window in water.
Adjusting the molar ratio of monomers in mPEG-PLGA did not significantly alter the gelation window while decreasing the LA units in mPEG-PCLA narrowed the gelation window. In degradation test, mPEG-PCLA series showed slower degradation rate, L4C6 and L6C4 both degraded less than 40% of their original weight after 30 days. In brief, L6C4 hydrogel has optimal ratio, which shows good biocompatibility in cytotoxicity test. Also, L6C4 is a promising drug delivery carrier in cartilage defect regeneration model.
These results demonstrate some diblock copolymers of mPEG-PLGA and mPEG-PCLA can be used as in situ gelling drug delivery systems.
1. O. Wichterle, D.L., Hydrophilic gels in biologic use. Nature, 1960. 185: p. 117-118.
2. F. Lim, A.M.S., Microencapsulated islets as bioartificial pancreas. Science 1980. 210:p. 908-910.
3. I.V. Yannas, E.L., D.P. Orgill, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Science, 1989. 86:p 933-937.
4. Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev, 2008. 60: p. 1638-49.
5. Gert W.Bos, R.V., Okke Franssen, Jeroen M.Bezemer,Wim. E. Hennink, and Daan J.A. Crommelin, Hydrogels for the Controlled Release of Pharmaceutical Proteins. Pharmaceutical Technology, 2001. 79:p. 110-120.
6. A.S. Hoffman, Intelligent Polymers, in: K. Park, Controlled Drug Delivery: Challenge and Strategies, American Chemical Society, Washington, DC, 1997:p. 485–497.
7. Y.H. Bae, Stimuli-Sensitive Drug Delivery, in: K. Park, Controlled Drug Delivery: Challenge and Strategies, Ameri can Chemical Society, Washington, DC, 1997: p. 147–160.
8. W.S. Shim, J.S.Y., Y.H. Bae, D.S. Lee, Novel injectable pH and temperature sensitive block copolymer hydrogels. Biomacromolecules, 2005.6:p. 2930-2934.
9. W.S. Shim, S.W.K., D.S. Lee, Sulfonamide-based pH- and temperature-
sensitive biodegradable block copolymer hydrogels. Biomacromolecules,
2006. 7:p. 1935-1941.
10. He, C.K., S. W. Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release, 2008. 127: p. 189-207.
11. IUPAC, Compendium of Chemical Terminology. 1997.
12. Velthoen, I.W., Thermo-responsive hydrogels based on branched block copolymers. 2008, University of Twente, Enschede, The Netherlands.
13. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev, 2002. 54: p. 37-51.
14. Kim, M.S., et al., In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels. Tissue Eng, 2006. 12: p. 2863-2873.
15. Moon Suk Kim, K.S.S., Gilson Khang, Sun Hang Cho, Hai Bang Lee, Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers
and their applications as thermo-sensitive materials. Biomedical Materials Research, 2004. 70: p. 154-158.
16. Chu, C.C., Hydrolytic Degradation of Polyglycolic Acid:Tensile Strength and Crystallinity Study. Applied Polymer Science, 1981. 26: p. 1727-1734.
17. Li, Y.M., thermosensitive mPEG-PLGA hydrogels:Synthesis and effect of copolymer composition on the drug delivery system. 2010, National Tsing Hua University, Taiwan.
18. F756-00, A., Standard Practice for Assessment of Hemolysis Properties of Materials. 2000.
19. F619-03, A., Standard Practice for Extraction of Medical Plastics. 2003.
20. Lin Yu, G.C., Huan Zhang, Jiandong Ding, Temperature-Induced Spontaneous Sol–Gel Transitions of Poly(D,L-lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L-lactic acid-co-glycolic acid) Triblock Copolymers and Their End-Capped Derivatives in Water. Journal of Polymer Science, 2006.6 : p. 1122-1133.