研究生: |
劉岳樺 Liu, Yueh-Hua |
---|---|
論文名稱: |
手性氧釩錯合物的催化2-巰基苯並噁唑對乙烯基芳烴進行不對稱自由基1,2-烷氧基硫基化反應 Asymmetric Radical-Type 1,2-Alkoxy-Sulfenylation of 2-Mercapto-Benzoxazole to Vinylarenes Catalyzed by Chiral Vanadyl Complexes |
指導教授: |
陳建添
Chen, Chien-Tien |
口試委員: |
黃郁文
Huang, Yu-Wen 吳學亮 Wu, Hsyueh-Liang 林民生 Tamio, Hayashi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 321 |
中文關鍵詞: | 硫基自由基 、2-巰基苯並噁唑 、均裂取代 、對映選擇性 、烷氧基自由基轉移 、β-烷氧基硫醚 |
外文關鍵詞: | Thiyl radical, 2-Mercaptobenzoxazole, Homolytic substitution, Enantioselective, Alkoxy radical transfer, β-Alkoxysulfide |
相關次數: | 點閱:27 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用手性氧釩催化劑搭配氧化劑TBHP生成並引導自由基在醇類溶劑中對乙烯基芳烴進行不對稱的1,2-烷氧基硫基化反應。在七種雜芳硫醇自由基試劑之初步檢測,挑選出鏡像選擇性最佳的2-巰基苯並噁唑進行後續研究。經過十一種柳醛C-3與C-5取代的手性氧釩催化劑以及一系列反應濃度、溫度、溶劑與氧化劑的優化,確立最佳化的反應條件。在八種醇類溶劑的測試後,確立反應對甲醇、乙醇、正丙醇、正丁醇與異戊醇等一級醇類溶劑的通用性;並以甲醇與五十種鄰、間、對不同單取代、雙取代以及苯並/雜芳並的乙烯基芳烴及三種不同取代基的2-巰基苯並噁唑進行搭配,在大部分的例子中可得到高度的立體選擇性(>80%)與中等(~60%)至良好(~80%)的產率,產率可高達92%,ee值可高達96%。我們推測了產物與副產物可能的反應機制,並搭配理論計算進行反應中間體與過渡態的鏡像選擇性探討,最終我們也利用X光單晶繞射儀確立一代表性產物的絕對立體化學。
In this thesis, we utilized chiral vanadyl catalysts to facilitate the asymmetric 1,2-alkoxy-sulfenylation of vinylarenes via a radical pathway in alcohol solvents, employing TBHP as the oxidant. Among seven heteroarylthio radical precursors screened initially, 2-mercaptobenzoxazole was selected for further investigation due to its superior enantioselectivity. Through optimization involving eleven chiral vanadyl catalysts and a series of parameters including reaction concentration, temperature, solvent, and oxidant, optimal reaction conditions were established. After being tested with eight alcohol solvents, the generality of the reaction towards primary alcohol solvents was confirmed. Utilizing methanol and fifty different vinylarenes, along with 2-mercaptobenzoxazole with various substituents, resulted in high enantioselectivity (>80%) with moderate (~60%) to good yields (~80%) in most cases, with yields reaching up to 92% and ee values up to 96%. Possible reaction mechanisms for the products and by-products were proposed, and the enantioselectivity of reaction intermediates was explored through theoretical calculations. Finally, the absolute stereochemistry of the products was confirmed using X-ray single-crystal diffraction analysis.
1. Bao, X.; Li, J.; Jiang, W.; Huo, C. Radical-Mediated Difunctionalization of Styrenes. Synthesis 2019, 51, 4507−4530.
2. Kharasch, N.; Buess, C. M. Derivatives of Sulfenic Acids. II. Characterization of Olefins with 2,4-Dinitrobenzenesulfenyl Chloride. J. Am. Chem. Soc. 1949, 71, 2724−2728.
3. Taniguchi, N. Copper-Catalyzed 1,2-Hydroxysulfenylation of Alkene Using Disulfide via Cleavage of the S-S Bond. J. Org. Chem. 2006, 71, 7874−7876.
4. Huang, J.; Li, X.; Xu, L.; Wei, Y. Three-Component Oxychalcogenation of Alkenes under Metal-Free Conditions: A Tetrabutylammonium Tribromide-Catalyzed System. J. Org. Chem. 2023, 88, 3054−3067.
5. Yuan, Y.; Chen, Y.; Tang, S.; Huang, Z.; Lei, A. Electrochemical oxidative oxysulfenylation and aminosulfenylation of alkenes with hydrogen evolution. Sci. Adv. 2018, 4, eaat531.
6. Wang, Y.; Deng, L.; Mei, H.; Du, B.; Han, J.; Pan, Y. Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources. Green Chem. 2018, 20, 3444−3449.
7. Zhou, S.-F.; Pan, X.; Zhou, Z.-H.; Shoberu, A.; Zou, J.-P. Air Oxidative Radical Hydroxysulfurization of Styrenes Leading to β‑Hydroxysulfides. J. Org. Chem. 2015, 80, 3682−3687.
8. Chen, Z.; Xue, F.; Liu, T.; Wang, B.; Zhang, Y.; Jin, W.; Xia, Y.; Liu, C. Synthesis of β-hydroxysulfides via visible-light-driven and EDA complex-promoted hydroxysulfenylation of styrenes with heterocyclic thiols in EtOH under photocatalyst-free conditions. Green Chem. 2022, 24, 3250−3256.
9. Hong, J. E.; Jung, Y.; Jang, D. M. M.; Kim, S.; Park, J.; Park, Y. Visible-Light-Induced Organophotocatalytic Difunctionallization: Open-Air Hydroxysulfurization of Aryl Alkenes with Aryl Thiols. J. Org. Chem. 2022, 87, 7378−7391.
10. Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. Catalytic Asymmetric Thiofunctionalization of Unactivated Alkenes. J. Am. Chem. Soc. 2011, 133, 15308−15311.
11. Denmark, S. E.; Chi, H. M. Lewis Base Catalyzed, Enantioselective, Intramolecular Sulfenoamination of Olefins. J. Am. Chem. Soc. 2014, 136, 8915−8918.
12. Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P.; Wang, H. Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes. Nat. Chem. 2014, 6, 1056−1064.
13. Liu, X.-D.; Luo, Y.; Huo, X.; Luo, H.-Y.; Cao, R.-F.; Chen, Z.-M. Chiral Sulfide/Phosphoric Acid Cocatalyzed Enantioselective Intermolecular Oxysulfenylation of Alkenes with Phenol and Alcohol O-Nucleophiles. CCS Chem. 2022, 4, 3342−3354.
14. Liu, X.-D.; Ye, A.-H.; Chen, Z.-M. Catalytic Enantioselective Intermolecular Three-Component Sulfenylative Difunctionalizations of 1,3-Dienes. ACS Catal. 2023, 13, 2715−2722.
15. Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Enantioselective Trifluoromethylthiolating Lactonization Catalyzed by an Indane-Based Chiral Sulfide. Angew. Chem. Int. Ed. 2016, 55, 5846−5850.
16. Liang, Y.; Zhao, X. Enantioselective Construction of Chiral Sulfides via Catalytic Electrophilic Azidothiolation and Oxythiolation of N‑Allyl Sulfonamides. ACS Catal. 2019, 9, 6896−6902.
17. Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Catalytic Asymmetric Coupling of 2-Naphthols by Chiral Tridentate Oxovanadium(IV) Complexes. Org. Lett. 2001, 3, 869−872.
18. Barhate, N. B.; Chen, C.-T. Catalytic Asymmetric Oxidative Couplings of 2-Naphthols by Tridentate N-Ketopinidene-Based Vanadyl Dicarboxylates. Org. Lett. 2002, 4, 2529−2532.
19. Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. Highly Enantioselective Aerobic Oxidation of α-Hydroxyphosphonates Catalyzed by Chiral Vanadyl(V) Methoxides Bearing N-Salicylidene-α-aminocarboxylates. J. Am. Chem. Soc. 2006, 128, 6308−6309.
20. Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Chiral N-salicylidene vanadyl carboxylate-catalyzed enantioselective aerobic oxidation of α-hydroxyesters and amides. Proceed. Natl. Acad. Sci. USA 2006, 103, 3522−3527.
21. Yang, W.-C.; Weng, S.-S.; Ramasamy, A.; Rajeshwaren, G.; Liao, Y.-Y.; Chen, C.-T. Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes. Org. Biomol. Chem. 2015, 13, 2385−2392.
22. Fenton, H. J. H. LXXIII.−Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans. 1894, 65, 899−910.
23. Chen, C.-T.; Su, Y.-C.; Lu, C.-H.; Lien, C.-I.; Hung, S.-F.; Hsu, C.-W.; Agarwal, R.; Modala, R.; Tseng, H.-M.; Tseng, P.-X.; Fujii, R.; Kawashima, K.; Mori, S. Enantioselective Radical Type, 1,2-Oxytrifluoromethylation of Olefins Catalyzed by Chiral Vanadyl Complexes: Importance of Noncovalent Interactions. ACS Catal. 2021, 11, 7160−7175.
24. Chen, C.-T.; Chang, Y.-C.; Tseng, P.-X.; Lein, C.-I.; Hung, S.-F.; Wu, H.-L. Asymmetric Synthesis of Trifluoroethyl-Based, Chiral 3-benzyloxy-1- and -2-phenyl-quinazolinones of Biomedicinal Interest by Radical Type Cross-Coupling to Olefins. Int. J. Mol. Sci. 2023, 24, 513.
25. Chen, C.-T.; Hung, S.-F.; Tsai, B.-Y.; Chen, T.-C.; Lein, C.-I.; Tseng, P.-X.; Chang, Y.-C.; Chuang, C.-W.; Agarwal, R.; Hsu, C.-W.; Shimizu, Y.; Fujii, R.; Mori, S. Asymmetric Cross Couplings of Trifluoromethyl Radical to Vinylarenes with N-Hydroxy-oxazinediones and Subsequent Aerobic Oxidative Homocoupling of 2-Naphthols Catalysed by Chiral Vanadyl Complexes. Adv. Synth. Catal. 2024, 366, 248−261.
26. Chuang, C.-W.; Huang, G.-R.; Hung, S.-F.; Hsu, C.-W.; Liu, Y.-H.; Hwang, C.-H.; Chen, C.-T. Enantioselective Radical-Type 1,2-Alkoxy-Phosphinoylation to Styrenes Catalyzed by Chiral Vanadyl Complexes. Angew. Chem. Int. Ed. 2023, 62, e202300654.
27. Choudhuri, K.; Mandal, A.; Mal, P. Aerial dioxygen activation vs. thiol–ene click reaction within a system. Chem. Commun. 2018, 54, 3759−3762.
28. Yue, H.-L.; Klussmann, M. Acid-Catalyzed Oxidative Addition of Thiols to Olefins and Alkynes for a One-Pot Entry to Sulfoxides. Synlett 2016, 27, 2505−2509.
29. Nakajima, K.; Kojima, M.; Fujita, J. Asymmetric oxidation of sulfides to sulfoxides by organic hydroperoxides with optically active Schiff base-oxovanadium (IV) catalysts. Chem. Lett. 1986, 15, 1483−1486.
30. Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H. Efficient Asymmetric Oxidation of Sulfides and Kinetic Resolution of Sulfoxides Catalyzed by a Vanadium-Salan System. J. Org. Chem. 2004, 69, 8500−8503.
31. Yu, G.; Ou, Y.; Chen, D.; Huang, Y.; Yan, Y.; Chen, Q. Air-Induced Disulfenylation of Alkenes: Facile Synthesis of Vicinal Dithioethers. Synlett 2019, 31, 83−86.
32. Nakajima, K.; Kojima, M.; Tsuchimoto, M.; Yoshikawa, Y.; Fujita, J. Isomerization of a Diastereomeric Oxovanadium(IV) Complex Containing an Unsymmetrical Tetradentate Schiff Base Ligand Catalyzed by Oxovanadium(V) Species. Chem. Lett. 1994, 9, 1593−1596.
33. Parsaee, F.; Senarathna, M. C.; Kannangara, P. B.; Alexander, S. N.; Arche, P. D. E.; Welin, E. R. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 2021, 5, 486−499.
34. Kupwade, R. V. A Concise Review on Synthesis of Sulfoxides and Sulfones with Special Reference to Oxidation of Sulfides. J. Chem. Rev. 2019, 1, 99−113.
35. Mao, S.; Li, Q.; Yang, Z.; Li, Y.; Ye, X.; Wang, H. Design, synthesis, and biological evaluation of benzoheterocyclic sulfoxide derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. J. Enzyme Inhib. Med. Chem. 2023, 38, 2175820.