研究生: |
陳耀琦 Yao chi chen |
---|---|
論文名稱: |
Annotation of Macromolecule-Binding Sites 於蛋白質上對巨分子結合位置的注釋 |
指導教授: |
林小喬
Carmay Lim |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 蛋白質間作用力 |
外文關鍵詞: | protein-ligand interactions, functional annotation, electrostatics, protein energetics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構基因體學和x-ray,NMR等實驗方法的快速發展,使得蛋白質的結構往往比其所屬功能可更快一步的得知.而對於這些已先有結構的蛋白質,為進一步知其所屬功能,必需佐以各種生化實驗。儘管這些生化實驗能夠提供極為準確的訊息,但所需耗費的人力,時間卻甚為可觀。因此,本論文的研究目標為發展電腦輔助的方法來有效偵測這些已先有結構的蛋白質之所屬功能。同時,有鑒於蛋白質與巨分子之間作用力對細胞的重要性,因此所研究的蛋白質將著重於與DNA/RNA/蛋白質這三種巨分子有作用力的類型上。於論文第一章中,我們將簡述以往的相關研究。
於論文第二章中,我們發現在蛋白質上這些巨分子結合位置均擁有一個共通的特徵,即是他們傾向位於擁有高靜電和高凡得瓦張力的區域。同時藉由進一步的分析,我們了解到,即使這些巨分子結合位置擁有高靜電和高凡得瓦張力的特徵,不同的巨分子結合位置其高靜電和高凡得瓦張力的程度表現上仍有顯著上的差異。並由此差異,我們可辨識出不同的巨分子結合位置。
於論文第三章中,我們發展預測方法來偵測 DNA-binding protein 結構上的 DNA 結合位置。此預測方法須利用 DNA-binding protein 結構上靜電和演化上的訊息。而在本章中我們發展的預測方法將與以往的預測方法進行一連串的比較,同時,此法成功的被運用於 DNA-free 的蛋白質結構狀態下。
於論文第四章中,我們發展預測方法來偵測 RNA-binding protein 結構上的 RNA 結合位置。此預測方法須利用 RNA-binding protein 結構上靜電、演化和構形等的訊息。我們並更進一步的將此法成功的運用於 RNA-free 的蛋白質結構狀態。
最後,於論文第五章中,對於先前的第二、三和四章節,我們提出整合性的結論,同時對於之後有興趣的主題加以簡述。
1. Burley, S.K., Almo, S.C., Bonanno, J.B., Capel, M., Chance, M.R., Gaasterland, T., Lin, D., Sali, A., Studier, F.W. and Swaminathan, S. (1999) Structural genomics: beyond the human genome project. Nat. Genet, 23, 151-157.
2. Kinoshita, K. and Nakamura, H. (2003) Protein informatics towards function identification. Current Opinion in Structural Biology, 13, 396-400.
3. Jones, S. and Thornton, J.M. (2004) Searching for functional sites in protein structures. Curr Opin Chem Biol. , 8, 3-7.
4. Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B. et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature, 440, 631-636.
5. Lesley, S.A., Kuhn, P., Godzik, A., Deacon, A.M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H.E., McMullan, D., Shin, T. et al. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proceedings of the National Academy of Sciences, 99, 11664-11669.
6. Janin, J., Henrick, K., Moult, J., Eyck, L.T., Sternberg, M.J.E., Vajda, S., Vakser, I. and Wodak, S.J. (2003) CAPRI: A Critical Assessment of PRedicted Interactions. Proteins Structure Function and Genetics, 52, 2-9.
7. Ohlendorf, D.H. and Matthew, J.B. (1985) Electrostatics and flexibility in protein-DNA interactions. Adv Biophys., 20, 137-151.
8. Jones, S., van Heyningen, P., Berman, H.M. and Thornton, J.M. (1999) Protein-DNA interactions: a structural analysis. Journal of Molecular Biology, 287, 877-896.
9. Jones, S., Daley, D.T., Luscombe, N.M., Berman, H.M. and Thornton, J.M. (2001) Protein-RNA interactions: a structural analysis. Nucleic Acids Res, 29, 943-954.
10. Stawiski, E.W., Gregoret, L.M. and Mandel-Gutfreund, Y. (2003) Annotating nucleic acid binding function based on protein structure. J Mol Biol., 326, 1065-1079.
11. Jones, S., Shanahan, H.P., Berman, H.M. and Thornton, J.M. (2003) Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Res., 31, 7189-7198.
12. Shanahan, H.P., Garcia, M.A., Jones, S. and Thornton, J.M. (2004) Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res., 32, 4732-4741.
13. Tsuchiya, Y., Kinoshita, K. and Nakamura, H. (2004) Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces. Proteins. , 55, 885-894.
14. Bhardwaj, N., Langlois, R.E., Zhao, G. and Lu, H. (2005) Kernel-based machine learning protocol for predicting DNA-binding proteins. Nucleic Acids Res. , 33, 6486-6493.
15. Chen, Y.C., Wu, C.Y. and Lim, C. (2007) Predicting DNA-Binding Amino Acid Residues from Electrostatic Stabilization upon Mutation to Asp/Glu and Evolutionary Conservation. Proteins: Structure, Function, and Bioinformatics, 67, 671-680.
16. Jones, S., Barker, J.A., Nobeli, I. and Thornton, J.M. (2003) Using structural motif templates to identify proteins with DNA binding function. Nucl. Acid Res. , 31, 2811-2823.
17. McLaughlin, W.A. and Berman, H.M. (2003) Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J Mol Biol., 330, 43-55.
18. Ahmad, S., Gromiha, M.M. and Sarai, A. (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics., 20, 477-486.
19. Wang, L. and Brown, S.J. (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. , 34, W243-248.
20. Kuznetsov, I.B., Gou, Z., Li, R. and Hwang, S. (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins., 64, 19-27.
21. Draper, D.E. (1999) Themes in RNA-protein recognition. J Mol Biol, 293, 255-270.
22. Jeong, E., Chung, I. and Miyano, S. (2004) A Neural Network Method for Identification of RNA-Interacting Residues in Protein. Genome Informatics, 15, 105-116.
23. Terribilini, M., Lee, J.H., Yan, C., Jernigan, R.L., Honavar, V. and Dobbs, D. (2006) Prediction of RNA binding sites in proteins from amino acid sequence. Rna, 12, 1450-1462.
24. Kim, O.T.P., Yura, K. and Go, N. (2006) Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction. Nucl. Acids Res., 34, 6450-6460.
25. Chen, Y.C. and Lim, C. (2008) Predicting RNA-binding sites from the protein structure based on electrostatics, evolution and geometry. Nucl. Acids Res., 36, e29-.
26. Jones, S. and Thornton, J.M. (1996) Principles of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 93, 13.
27. Conte, L.L., Chothia, C. and Janin, J. (1999) The Atomic Structure of Protein-Protein Recognition Sites. JMB, 285, 2177-2198.
28. Noskov, S. and Lim, C. (2001) Free Energy Decomposition of Protein-Protein Interactions. Biophys. J., 81, 737-750.
29. Zhou, H.-X. and Shan, Y. (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins: Structure, Function and Genetics, 44, 336-343.
30. Jones, S. and Thornton, J. (1997) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol. 272(1):133-143.
31. Cole, C. and Warwicker, J. (2002) Side-chain conformational entropy at protein-protein interfaces. Protein Sci, 11, 2860-2870.
32. Michael K. Gilson, B.H. (1988) Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins: Structure, Function, and Genetics, 4, 7-18.
33. Gabb, H.A., Jackson, R.M. and Sternberg, M.J.E. (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. Journal of Molecular Biology, 272, 106-120.
34. Kufareva, I., Budagyan, L., Raush, E., Totrov, M. and Abagyan, R. (2007) PIER: Protein Interface Recognition for Structural Proteomics. PROTEINS: Structure, Function, and Bioinformatics, 67, 400-417.
35. Hoskins, J., Lovell, S. and Blundell, T.L. (2006) An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Sci, 15, 1017-1029.
36. Liang, S., Zhang, C., Liu, S. and Zhou, Y. (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Research, 34, 3698.
37. Murakami, Y. and Jones, S. (2006) SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics, 22, 1794-1795.
38. Koike, A. and Takagi, T. (2004) Prediction of protein-protein interaction sites using support vector machines. Protein Engineering Design and Selection, 17, 165-173.
39. Bordner, A.J. and Abagyan, R. (2005) Statistical Analysis and Prediction of Protein磒rotein Interfaces. PROTEINS: Structure, Function, and Bioinformatics, 60, 353-366.
40. Bradford, J.R. and Westhead, D.R. (2005) Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics, 21, 1487-1494.
41. Fariselli, P., Pazos, F., Valencia, A. and Casadio, R. (2002) Prediction of protein-protein interaction sites in heterocomplexes with neural networks. European Journal of Biochemistry, 269, 1356-1361.
42. Huiling Chen, H.-X.Z. (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: Test against NMR data. PROTEINS: Structure, Function, and Bioinformatics, 61, 21-35.
43. Aleksey Porollo, J., lstrok and aw, M. (2007) Prediction-based fingerprints of protein-protein interactions. PROTEINS: Structure, Function, and Bioinformatics, 66, 630-645.
44. Neuvirth, H., Raz, R. and Schreiber, G. (2004) ProMate: A Structure Based Prediction Program to Identify the Location of Protein-Protein Binding Sites. Journal of Molecular Biology, 338, 181-199.
45. Bradford, J.R., Needham, C.J., Bulpitt, A.J. and Westhead, D.R. (2006) Insights into Protein-Protein Interfaces using a Bayesian Network Prediction Method. Journal of Molecular Biology, 362, 365-386.
46. Chirgadze Iu, N. and Larionova, E.A. (2005) Principal role of large polar residue clusters of RNA-binding proteins in the formation of complexes with RNA]. Mol Biol (Mosk), 39, 1017-1031.
47. Varani, G. (2005) How proteins and RNA recognize each other. FEBS Journal, 272, 2087-2087.
48. Stawiski, E.W., Gregoret, L.M. and Mandel-Gutfreund, Y. (2003) Annotating nucleic acid-binding function based on protein structure. J. Mol. Biol., 326, 1065-1079.
49. Bhardwaj, N., Langlois, R.E., Zhao, G. and Lu, H. (2005) Kernel-based machine learning protocol for predicting DNA-binding proteins Nucleic Acids Res. , 33, 6486-6493.
50. Chen, Y.C., Wu, C.Y. and Lim, C. (2007) Predicting DNA-Binding Sites on Proteins from Electrostatic Stabilization upon Mutation to Asp/Glu and Evolutionary Conservation. Proteins: Struct., Funct. & Bioinformatics, 67, 671-680.
51. McLaughlin, W.A. and Berman, H.M. (2003) Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J. Mol. Biol., 330, 43-55.
52. Wang, L. and Brown, S.J. (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucl. Acids Res., 34, W243-248.
53. Draper, D.E. (1999) Themes in RNA-protein recognition. J. Mol. Biol., 293, 255-270.
54. Jeong, E., Chung, I. and Miyano, S. (2004) A neural network method for identification of RNA-interacting residues in protein. Genome Inform. Ser. workshop Genome Inform., 15, 105-116.
55. Jones, S. and Thornton, J. (1997) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol. 272(1):133-43.
56. Fariselli, P., Pazos, F., Valencia, A. and Casadio, R. (2002) Prediction of protein--protein interaction sites in heterocomplexes with neural networks. Eur J Biochem, 269, 1356-1361.
57. Chen, Y. and Varani, G. (2005) Protein families and RNA recognition. Febs J, 272, 2088-2097.
58. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J. et al. (2002) The Protein Data Bank. Acta Crystallographica D, 58, 899-907.
59. Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R., Grant, A., Lee, D. et al. (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res, 33, D247-251.
60. Kundrotas, P.J. and Alexov, E. (2007) PROTCOM: searchable database of protein complexes enhanced with domain-domain structures. Nucl. Acids Res., 35, D575-579.
61. Henrick, K. and Thornton, J.M. (1998) PQS: a protein quaternary structure file server. Trends in Biochemical Sciences, 23, 358-361.
62. McDonald, I.K. and Thornton, J.M. (1994) Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. , 238, 777-793.
63. Milburn, D. (1998) Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. Protein Engineering Design and Selection, 11, 855-859.
64. Case, D.A., Darden, T., Cheatham Iii, T.E., Simmerling, C., Wang, J., Duke, R.E., Luo, R., Merz, K.M., Pearlman, D.A. and Crowley, M. (2006) AMBER 9. University of California, San Francisco.
65. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T. et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem., 24, 1999-2012.
66. Liang, S., Zhang, J., Zhang, S. and Guo, H. (2004) Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores. Proteins Structure Function and Bioinformatics, 57, 548-557.
67. Tsai, C.J., Lin, S.L., Wolfson, H.J. and Nussinov, R. (1997) Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci, 6, 53-64.