研究生: |
鍾佩珊 Chung, Pei-Shan |
---|---|
論文名稱: |
以穿透式電子顯微鏡時間解析法分析鋁誘發結晶製備多晶矽薄膜之缺陷研究 Time Resolved TEM Study of Defects Annihilation in Poly-Si Film Grown by Aluminum Induced Crystallization Process |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
張立
羅聖全 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 多晶矽薄膜 、鋁誘發結晶 、穿透式電子顯微鏡 、雙晶 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁誘發結晶法被研究可用來製備成本便宜且擁有大晶粒的多晶矽薄膜,但是其晶粒內部擁有的高密度缺陷在載子傳輸的過程中將提供大量的電子電洞復合機會,直接影響了太陽能電池的效率。為解決此問題,我們利用穿透式電子顯微鏡時間解析法來了解矽晶粒成核成長的情形。
利用濺鍍方法在玻璃基板上鍍上300nm的多晶鋁層,接著在大氣中放置2分鐘得到自身氧化層,最後再鍍上600nm的非晶矽層,得到鋁/氧化鋁/非晶矽的結構。接著將試片分別在通入氬氣以及氮氫混和的氣氛下以400℃在不同的時間下退火,接著利用穿透式電子顯微鏡等分析技術來了解矽晶粒隨著退火時間增加的成核成長情形。
我們發現,在矽晶矽的初始核中雙晶即存在,且雙晶密度隨著退火時間的增加而有減少的趨勢,而在不同的氣氛下退火對雙晶密度也造成影響。另外也發現利用鋁誘發結晶法製備的多晶矽薄膜擁有(100)的優選方向,我們進而研究在退火初期的多晶矽薄膜,發現矽晶粒傾向於在鋁/氧化鋁的介面處成核,造成(100)優選方向的關係。
Aluminum-induced crystallization (AIC) process was used to prepare the cheaper and has large grain poly-silicon films for thin film solar cell. But it is observed that the high density of intragrain defects form in the poly-Si film during AIC process, that will enhance the carrier recombination probability, and such that directly influence the efficiency of solar cell. To solve this problem, we use TEM to investigate the nucleation and growth of silicon grain in a series of time length of AIC process.
Using sputtering method, 300 nm poly-Al layer was deposited onto glass substrate, then the sputtering chamber was exposed to atmosphere for 2 min in order to obtain a native oxide layer. Finally 600 nm amorphous silicon layer was deposited using a sputter, to get Al/Al2O3/α-Si stacking structure. After deposition processes, the samples were annealed in a tube furnace under Ar ambient and N2 mixed H2 ambient at 400℃ different times, respectively. The nucleation and growth mechanism of poly-Si grains are investigated with TEM.
We found that twin has existed at initial state of silicon grains. The twin density decreases with increasing the annealing time, and will also be influenced in different annealing atmosphere. It was also found that AIC processed poly-Si grains has {100} preferred orientation. This promotes us to study the grain orientation in the poly-Si thin film at initial stage of annealing. The nuclei Si tends to growth at Al/ Al2O3 interface, resulting the phenomenon of {100} preferred orientation.
1. S. H. Kim, C. MacCracken and J. Edmonds, Progress in Photovoltaics 8 (1), 3-15 (2000).
2. Photon International, ITRI/MCL, Taiwan (2010/05)
3. R. McConnell et al., the 19th European PV Solar Energy Conference and Exhibition Paris, France June 7–11, (2004)
4. R. B. Bergmann, G. Oswald, M. Albrecht, and V. Gross, “Solid-phase crystallized Si films on glass substrates for thin-film solar cells,” Sol. Energy Mater. Sol. Cells, vol. 46, p. 147, 1997.
5. R. S. Sposili and J. S. Im, “Sequential lateral solidification of thin silicon films on SiO2,” Appl. Phys. Lett., vol. 69, p. 2864, 1996.
6. R. Petinot, F. Plais, D. Mencaraglia, P. Legagneux, C. Reita, and O. Huet, “Defects in solid phase and laser crystallised polysilicon thin-film transistors,” J. Non-Cryst. Solids, vol. 227–230, p. 1207, 1998.
7. M. S. Haque, H. A. Naseem, and W. D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures,” J. Appl. Phys., vol. 75, p. 3928, 1994.
8. D. V. Gestel, I. Gordon, H. Bender,D. Saurel, J. Vanacken, G. Beaucarne, and J. Poortmans, “Intragrain defects in polycrystalline silicon layers grown by aluminum-induced crystallization and epitaxy for thin-film solar cells,” J. Appl. Phys., vol. 105, 114507, 2009.
9. R. S. Sposili and J. S. Im, Appl. Phys. Lett., 69, pp.2864, 1996
10. A. G. Aberle, P. I. Widenborg, D. Song, A. Straub, M.L. Terry, T. Walsh, A. Sproul, P. Campbell, et al, Proceedings of the 31st IEEE PVSEC-USA, pp.887, USA, 2004
11. R. B. Bergmann, G. Oswald, M. Albrecht and V. Gross, Solar Energy Materials and Solar Cells, 46 (2), 147-155 (1997).
12. T. Matsuyama, N. Terada, T. Sawada, S.Tsuge, K. Wakisaka, and S. Tsuda, J. Non-Cryst. Solid, 198-200, pp. 940, 1996
13. K. Ishikawa, M. Ozawa, C. –H. Neuhaus, and M. Matsumura, Jpn. J. Appl. Phys., 37, pp.731, 1998
14. S.D. Brotherton, J. R. Ayers, M. J. Edwards, C. A. Fischer, C. Glaister, J. P. Gowers, J. D. McCulloch, and M. Trainor, Thin Solid Films, 337, pp.188, 1999
15. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, S. T. Wenham, Appl. Phys. Lett., 73(22), 1998
16. C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-Mediated Crystallization of Nickel Implanted Amorphous Silicon Thin Films,” J. Appl. Phys., 73, 12, 8279–8289, 1993
17. G. Ottaviani, D. Sigurd, V. Marrello, J.W. Mayer, J.O. McCaldin, J. Appl. Phys. 45, 1730 (1974)
18. Jin Hyeok Kim, Jeong Yong Lee, Jpn. J. Appl. Phys., 35, pp.2052(1996)
19. J. O. McCaldin, H. Sankur, Appl. Phys. Lett., 19, pp.524-527, 1971
20. A. Sarikov, J. Schneider, J. Klein, M. Muske, S. Gall, Journal of Crystal, 287, 442-445, (2006)
21. D. Van Gestel, P. Dogan, I. Gordon, H. Bender, K. Y. Lee, G. Beaucarne, S. Gall and J. Poortmans, Materials Science and Engineering B-Advanced Functional Solid-State Materials 159-60, 134-137 (2009).
22. D. Van Gestel, P. Dogan, I. Gordon, H. Bender, K. Y. Lee, G. Beaucarne, S. Gall and J. Poortmans, J. Appl. Phys., 105, (2009)
23. J. Nelson, The Physics of Solar Cell, 2003
24. R. E. Reed-Hill, Physical Metallurgy Principles, 3rd ed, 1992
25. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
26. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19,121 (1986).
27. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
28. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
29. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
30. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
31. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
32. R MEYER, J PILLOT, B ANDRIES - POWDER MET, 1971, 561-581, 1971
33. Gall, S., Muske, M., Sieber, I., Nast, O. & Fuhs, W. Aluminum-induced crystallization of amorphous silicon. J. Non-Cryst. Solids 299, 741-745 (2002).
34. L. C. Yu, "Mechanism of Enhanced Reaction in Aluminum induced Crystallization Process by Co-Doping Si in Aluminum Layer", (2011)
35. David R. Lide, “CRC Handbook of Chemistry and Physics”, Ed. 80th Edition, CRC Press, Boca Raton, FL, 1999.
36. George C. Yu, Jounal of Materials Chemistry, 13, 841-843, 2003
37. B. Gorka, P. Dogan, I. Sieber, F. Fenske and S. Gall, Thin Solid Films 515, 7643-7646 (2007).
38. J. Schneider, J. Klein, M. Muske, S. Gall and W. Fuhs, Applied Physics Letters 87 (3) (2005).
39. C. Messmer, J.C. Bilello, J. Appl. Phys. 52 (1981) 4623.
40. D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya, D.C. Jacobson, Phys. Rev. Lett. 70 (1993) 1643.
41. O. Nast, S.R. Wenham, J. Appl. Phys. 88 (2000) 124.
42. A. Sorikov, J. Schneider, M. Muske, I. Sieber, S. Gall, Thin Solid Film, 515, 7465-7468(2007).