研究生: |
麻彧暟 Ma, Yu-Kai |
---|---|
論文名稱: |
小鼠的社會階級和學習記憶能力之間的相關性 Correlation between social hierarchy and memory in mice |
指導教授: |
郭崇涵
Kuo, Tsung-Han |
口試委員: |
楊世斌
Yang, Shi-Bing 田恩奇 Tien, An-Chi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 社會階級 、記憶能力 、幼鼠 、鑽管測試 |
外文關鍵詞: | Social hierarchy, Memory, Weanling mice, tube test |
相關次數: | 點閱:54 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
社會等級在各種動物中十分常見,並且對維持社會結構有著重要的作用。由於年幼的動物不會表現出攻擊性行為,因此當前大多數對家鼠(Mus musculus)中的研究都集中在成年小鼠而非幼鼠的社會等級制度上。在本研究中,我們使用鑽管測試(一隻老鼠迫使其對手退縮離開管子)來建立幼鼠的社會等級制度,並檢查不同社會等級中幼鼠的行為表現。結果顯示幼鼠的社會等級與活動力、抑鬱和焦慮表現之間沒有顯著的相關性。意外的是從新物體識別測試和Y型迷宮的測驗結果顯示出,社會等級較高的小鼠表現出更好的記憶能力。另外qPCR的結果同樣表明,在社會階級較高的小鼠中,記憶相關基因的表達程度較高。最後,我們給小鼠注射了改善記憶的藥物,發現接受過藥物治療的小鼠不僅表現出更好的記憶力,同時表現出更高的社會階級,進一步支持了社會等級與記憶力之間的正關係。我們的研究通過採取行為測驗、分子和藥理學的方法,證明小鼠記憶力和社會等級之間的正相關。我們希望這個發現將為社交行為以及學習和記憶相關領域提供新的見解。
Social hierarchy is widespread in various animal species and plays an essential role in maintaining the social structure. In house mice, Mus musculus, since young animals do not perform aggressive behaviors, most current studies focus on the social hierarchy of adult but not young mice. Therefore, in this study, we used the tube test, one mouse forcing its opponent to back down from a tube was used to assess the social dominance of a mouse, to establish the first social hierarchy of weanling mice and examined a variety of behaviors across social ranks. Surprisingly, there is no significant correlation between the social ranks and mobility, depression-, and anxiety-like phenotypes in young mice. In contrast, the Novel Object Recognition Test and Y maze suggested that the weanling mice with higher social hierarchy showed better memory ability. The qPCR results also indicated higher expression of memory-related genes in mice with higher rank. Last, we injected memory-improving drugs into mice and found that mice treated with drugs showed not only better memory but also higher social dominance, further support the relationship between social hierarchy and memory. Together, by taking behavioral, molecular and pharmacological approach, our study reveals a positive correlation between memory and social hierarchy in mice. This finding may provide new insight into the fields of social interaction as well as learning and memory.
This study has been published in Communications Biology Chou, Y.J., Ma, Y.K., Lu, Y.H., King, J.T., Tasi, W.S., Yang, S.B., and Kuo, T.H. (2022). Potential cross-species correlations in social hierarchy and memory between mice and young children.
Angel, A., Volkman, R., Royal, T.G., and Offen, D. (2020). Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci 21. 10.3390/ijms21031144.
Balderas, I., Rodriguez-Ortiz, C.J., Salgado-Tonda, P., Chavez-Hurtado, J., McGaugh, J.L., and Bermudez-Rattoni, F. (2008). The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem 15, 618-624. 10.1101/lm.1028008.
Barnard, C.J., and Luo, N. (2002). Acquisition of dominance status affects maze learning in mice. Behavioural Processes 60, 53-59.
Broadbent, N.J., Gaskin, S., Squire, L.R., and Clark, R.E. (2010). Object recognition memory and the rodent hippocampus. Learning & memory 17, 5-11.
Chou, Y.J., Lu, Y.H., Ma, Y.K., Su, Y.S., and Kuo, T.H. (2021). The decisive role of subordination in social hierarchy in weanling mice and young children. iScience 24, 102073. 10.1016/j.isci.2021.102073.
Cohen, S.J., Munchow, A.H., Rios, L.M., Zhang, G., Ásgeirsdóttir, H.N., and Stackman Jr, R.W. (2013). The rodent hippocampus is essential for nonspatial object memory. Current Biology 23, 1685-1690.
Cohen, S.J., and Stackman Jr, R.W. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural brain research 285, 105-117.
Cordeira, J., Kolluru, S.S., Rosenblatt, H., Kry, J., Strecker, R.E., and McCarley, R.W. (2018). Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation. Behav Brain Res 339, 124-129. 10.1016/j.bbr.2017.11.033.
D’Hooge, R., and De Deyn, P.P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews 36, 60-90.
Deinhardt, K., and Chao, M.V. (2014). Trk receptors. Neurotrophic factors, 103-119.
Dere, E., Huston, J.P., and De Souza Silva, M.A. (2007). The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neuroscience & Biobehavioral Reviews 31, 673-704.
Foster, K.A., McLaughlin, N., Edbauer, D., Phillips, M., Bolton, A., Constantine-Paton, M., and Sheng, M. (2010). Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. Journal of Neuroscience 30, 2676-2685.
Francia, N., Cirulli, F., Chiarotti, F., Antonelli, A., Aloe, L., and Alleva, E. (2006). Spatial memory deficits in middle-aged mice correlate with lower exploratory activity and a subordinate status: role of hippocampal neurotrophins. European Journal of Neuroscience 23, 711-728.
Heinen, V.K., Benedict, L.M., Pitera, A.M., Sonnenberg, B.R., Bridge, E.S., and Pravosudov, V.V. (2021). Social dominance has limited effects on spatial cognition in a wild food-caching bird. Proceedings of the Royal Society B: Biological Sciences 288, 20211784. 10.1098/rspb.2021.1784.
Horii, Y., Nagasawa, T., Sakakibara, H., Takahashi, A., Tanave, A., Matsumoto, Y., Nagayama, H., Yoshimi, K., Yasuda, M.T., Shimoi, K., and Koide, T. (2017). Hierarchy in the home cage affects behaviour and gene expression in group-housed C57BL/6 male mice. Scientific Reports 7, 6991. 10.1038/s41598-017-07233-5.
Huntingford, F.A., and Turner, A.K. (1987). The consequences of animal conflict. In Animal Conflict, F.A. Huntingford, and A.K. Turner, eds. (Springer Netherlands), pp. 227-250. 10.1007/978-94-009-3145-9_9.
Kaczer, L., Pedetta, S., and Maldonado, H. (2007). Aggressiveness and memory: Subordinate crabs present higher memory ability than dominants after an agonistic experience. Neurobiology of Learning and Memory 87, 140-148.
Kim, E.J., Pellman, B., and Kim, J.J. (2015). Stress effects on the hippocampus: a critical review. Learn Mem 22, 411-416. 10.1101/lm.037291.114.
Kim, H.-J., Hur, S.W., Park, J.B., Seo, J., Shin, J.J., Kim, S.-Y., Kim, M.-H., Han, D.H., Park, J.-W., Park, J.M., et al. (2019a). Histone demethylase PHF2 activates CREB and promotes memory consolidation. EMBO reports 20, e45907.
Kim, H.J., Hur, S.W., Park, J.B., Seo, J., Shin, J.J., Kim, S.Y., Kim, M.H., Han, D.H., Park, J.W., Park, J.M., et al. (2019b). Histone demethylase PHF2 activates CREB and promotes memory consolidation. EMBO Rep 20, e45907. 10.15252/embr.201845907.
Kraus, C., Heistermann, M., and Kappeler, P.M. (1999). Physiological Suppression of Sexual Function of Subordinate Males: A Subtle Form of Intrasexual Competition Among Male Sifakas (Propithecus verreauxi)? Physiology & Behavior 66, 855-861.
Langston, R.F., and Wood, E.R. (2010). Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus 20, 1139-1153. 10.1002/hipo.20714.
Lee, Y.-S. (2014). Genes and signaling pathways involved in memory enhancement in mutant mice. Molecular Brain 7, 43. 10.1186/1756-6606-7-43.
Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P., and Freret, T. (2013). Object recognition test in mice. Nat Protoc 8, 2531-2537. 10.1038/nprot.2013.155.
Lindzey, G., Winston, H., and Manosevitz, M. (1961). Social dominance in inbred mouse strains. Nature 191, 474-476. 10.1038/191474a0.
Mitchell, N.C., Gould, G.G., Smolik, C.M., Koek, W., and Daws, L.C. (2013). Antidepressant-like drug effects in juvenile and adolescent mice in the tail suspension test: Relationship with hippocampal serotonin and norepinephrine transporter expression and function. Front Pharmacol 4, 131. 10.3389/fphar.2013.00131.
Mori, H., and Mishina, M. (1995). Structure and function of the NMDA receptor channel. Neuropharmacology 34, 1219-1237. 10.1016/0028-3908(95)00109-j.
Mumby, D.G., Gaskin, S., Glenn, M.J., Schramek, T.E., and Lehmann, H. (2002). Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9, 49-57. 10.1101/lm.41302.
Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597-603. 10.1126/science.1329206.
Papale, L.A., Madrid, A., Li, S., and Alisch, R.S. (2017). Early-life stress links 5-hydroxymethylcytosine to anxiety-related behaviors. Epigenetics 12, 264-276. 10.1080/15592294.2017.1285986.
Raleigh, M.J., McGuire, M.T., Brammer, G.L., and Yuwiler, A. (1984). Social and Environmental Influences on Blood Serotonin Concentrations in Monkeys. Archives of General Psychiatry 41, 405-410. 10.1001/archpsyc.1984.01790150095013.
Sarnyai, Z., Sibille, E.L., Pavlides, C., Fenster, R.J., McEwen, B.S., and Tóth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proceedings of the National Academy of Sciences 97, 14731-14736.
Seibenhener, M.L., and Wooten, M.C. (2015). Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp, e52434. 10.3791/52434.
Shang, Y., Wang, X., Li, F., Yin, T., Zhang, J., and Zhang, T. (2019). rTMS Ameliorates Prenatal Stress–Induced Cognitive Deficits in Male-Offspring Rats Associated With BDNF/TrkB Signaling Pathway. Neurorehabilitation and Neural Repair 33, 271-283. 10.1177/1545968319834898.
Strauss, E.D., and Holekamp, K.E. (2019). Social alliances improve rank and fitness in convention-based societies. Proc Natl Acad Sci U S A 116, 8919-8924. 10.1073/pnas.1810384116.
Swonger, A., and Rech, R.H. (1972). Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a maze. Journal of comparative and physiological psychology 81, 509.
Takao, K., and Miyakawa, T. (2006). Light/dark transition test for mice. J Vis Exp, 104. 10.3791/104.
Varholick, J.A., Bailoo, J.D., Palme, R., and Würbel, H. (2018). Phenotypic variability between Social Dominance Ranks in laboratory mice. Scientific Reports 8, 6593. 10.1038/s41598-018-24624-4.
Varholick, J.A., Pontiggia, A., Murphy, E., Daniele, V., Palme, R., Voelkl, B., Würbel, H., and Bailoo, J.D. (2019). Social dominance hierarchy type and rank contribute to phenotypic variation within cages of laboratory mice. Scientific Reports 9, 13650. 10.1038/s41598-019-49612-0.
von Engelhardt, J., Doganci, B., Jensen, V., Hvalby, Ø., Göngrich, C., Taylor, A., Barkus, C., Sanderson, D.J., Rawlins, J.N., Seeburg, P.H., et al. (2008). Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60, 846-860. 10.1016/j.neuron.2008.09.039.
Wang, F., Kessels, H.W., and Hu, H. (2014). The mouse that roared: neural mechanisms of social hierarchy. Trends in Neurosciences 37, 674-682.
Yamada, K., and Nabeshima, T. (2003). Brain-Derived Neurotrophic Factor/TrkB Signaling in Memory Processes. Journal of Pharmacological Sciences 91, 267-270.
Zuk, M., and Johnsen, T.S. (2000). Social environment and immunity in male red jungle fowl. Behavioral Ecology 11, 146-153. 10.1093/beheco/11.2.146.