研究生: |
吳昱辰 Wu, Yu-Chen |
---|---|
論文名稱: |
開發應用於高分子自組裝反應原位穿透式電子顯微鏡流體及加熱載台 Development of Fluid/Heating Holder for In-situ Fluid TEM Observation of Polymer Self-assembly |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
曾繁根
Tseng, Fan-Gang 吳文偉 Wu, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 電子顯微鏡 、流體臨場觀測 、加熱臨場觀測 、半導體製程 |
外文關鍵詞: | MEMS process |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子顯微鏡中臨場觀測技術近年來逐漸被廣泛討論,此技術開創了以往電子顯微鏡中觀測樣片之諸多限制,並開創了新穎與獨特的領域,本研究針對穿透式電子顯微鏡中臨場觀測之需求,開發穿透式電子顯微鏡之流體系統載具,利用微機電製程配合機構零件設計以及真空迫緊技術,製造出可與外界流通且仍然維持腔體內部高真空之流體載具,此新式設計使用200nm厚之鉻spacer定義出流體之微流道,改善了先前舊有流體載具中液體在觀測視窗中間之流速問題,使得在穿透式電子顯微鏡臨場觀測下可規範液體的流動方向,並觀測嵌段共聚高分子於甲苯溶劑特定流速潤濕下發生自組裝反應,由原本無序雜亂之結構逐漸開始排列,選用兩成分原子序差異較大之嵌段共聚高分子,在穿透式電子顯微鏡下明顯具有不同序號強度,以判斷開始發生自組裝反應而驗證此流體系統之可行性。此外利用微機電製程設計出加熱晶片,相較於傳統熱爐式加熱樣品桿,更能表現出微區加熱之快速升降溫高性能,且利用四點探針即時回饋得到精準的控溫,將新設計之加熱晶片結合上述之新式流體系統載具,開發出在穿透式電子顯微鏡中具有雙刺激元之流體加熱臨場觀測系統載具,以達到可同時與外界流通且精準控制反應環境溫度之目的,將臨場觀測技術與現今各式奈米材料反應過程連結,並對科學研究上做出貢獻。
The in-situ observation in electron microscope has been widely discussed in recent years. This technology overcomes many limitation of sample and creates innovation of observation in electron microscope. The research depends on the demands of in-situ observation in transmission electron microscopy, so develop the fluid holder, by MEMS processes, design of mechanism and o-rings to encapsulate the fluid. It allows to inject different kinds of fluid or gas, and will not affect the vacuum value from outside. The new MEMS processes use Cr spacer which thickness is 200 nm to define the direction of flow to improve the velocity in the fluid holder before. Availability of self-designed fluid holder is proven by phase transitions of polystyrene‐b‐poly(dimethylsiloxane) with tuning toluene with certain velocity. A variety of phases, such as the sphere, cylinder, gyroid, lamellar phases and even inverted phases, can be acquired by simply tuning the selectivity of solvent. Additionally, we design the heating chip by MEMS processes. Compared to traditional resistance wires, the heating chip has high performance in heating rapidly and cooling, and use four point resistance feedback to precisely control the temperature. Combine the new-designed heating chip and the new fluid holder to develop dual stimulus source for heating and fluid holder in transmission electron microscope. It can define the temperature of reaction surrounding while injecting fluid from outside. Let the technology of in-situ observation link with many kinds of reaction in nanometer scale, and contribute to the technology research.
1. Au - Hermannsdörfer, J.; Au - de Jonge, N., Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy. JoVE 2017, (120), e54943.
2. Hu, H.; Gopinadhan, M.; Osuji, C. O., Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10 (22), 3867-3889.
3. Lo, T.-Y.; Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
4. Baker, R. T. K.; Harris, P. S., Controlled atmosphere electron microscopy. Journal of Physics E: Scientific Instruments 1972, 5 (8), 793.
5. Yoshinori Fujiyoshi, M. N., Specimen-holding device for electron microscope. U.S. Patent 5406087 1995.
6. Parsons, D. F., Structure of Wet Specimens in Electron Microscopy. Science 1974, 186 (4162), 407-414.
7. Kaznacheyev, K.; Osanna, A.; Winn, B., Sealed cell for in-water measurements. AIP Conference Proceedings 2000, 507 (1), 395-400.
8. Liu, K.-L.; Wu, C.-C.; Huang, Y.-J.; Peng, H.-L.; Chang, H.-Y.; Chang, P.; Hsu, L.; Yew, T.-R., Novel microchip for in situTEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on a Chip 2008, 8 (11), 1915-1921.
9. Huang, T.-W.; Liu, S.-Y.; Chuang, Y.-J.; Hsieh, H.-Y.; Tsai, C.-Y.; Huang, Y.-T.; Mirsaidov, U.; Matsudaira, P.; Tseng, F.-G.; Chang, C.-S.; Chen, F.-R., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab on a Chip 2012, 12 (2), 340-347.
10. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science (New York, N.Y.) 2012, 336 (6077), 61-64.
11. Zhu, G.; Jiang, Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C., Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chemical Communications 2013, 49 (93), 10944-10946.
12. de Jonge, N.; Bigelow, W. C.; Veith, G. M., Atmospheric Pressure Scanning Transmission Electron Microscopy. Nano Letters 2010, 10 (3), 1028-1031.
13. Ring, E. A.; de Jonge, N., Microfluidic System for Transmission Electron Microscopy. Microscopy and Microanalysis 2010, 16 (5), 622-629.
14. Hsieh, T.-H.; Chen, J.-Y.; Huang, C.-W.; Wu, W.-W., Observing Growth of Nanostructured ZnO in Liquid. Chemistry of Materials 2016, 28 (12), 4507-4511.
15. Chen, Y.-C.; Chen, J.-Y.; Wu, W.-W., In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEM. The Journal of Physical Chemistry C 2017, 121 (46), 26069-26075.
16. Liu, S.-Y.; Kundu, P.; Huang, T.-W.; Chuang, Y.-J.; Tseng, F.-G.; Lu, Y.; Sui, M.-L.; Chen, F.-R., Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 2017, 31, 218-224.
17. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy 1958, 6 (1), 4-8.
18. Hideaki, M. a. N. S., Specimen heating and positioning device for an electron
microscope. Google Patents 1975.
19. Jones, J. S. a. P. R. S., Specimen heating holder for electron microscopes. Google Patents 1991.
20. Aoyama, T., et al., Electron microscope specimen holder. Google Patents 1994.
21. Zink, N.; Therese, H. A.; Pansiot, J.; Yella, A.; Banhart, F.; Tremel, W., In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD. Chemistry of Materials 2008, 20 (1), 65-71.
22. F., A. L.; C., B. W.; Miguel, J.-Y.; P., N. D.; John, D.; E., M. S., A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microscopy Research and Technique 2009, 72 (3), 208-215.
23. Chiu, C.-H.; Liang, W.-I.; Huang, C.-W.; Chen, J.-Y.; Liu, Y.-Y.; Li, J.-Y.; Hsin, C.-L.; Chu, Y.-H.; Wu, W.-W., Atomic Visualization of the Phase Transition in Highly Strained BiFeO3 Thin Films with Excellent Pyroelectric Response. Nano Energy 2015, 17, 72-81.
24. Pérez-Garza, H. H.; Morsink, D.; Xu, J.; Sholkina, M.; Pivak, Y.; Pen, M.; Weperen, S. v.; Xu, Q. In The “Climate” system: Nano-Reactor for in-situ analysis of solid-gas interactions inside the TEM, 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 17-20 April 2016; 2016; pp 85-90.
25. Cochran, E. W.; Garcia-Cervera, C. J.; Fredrickson, G. H., Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation. Macromolecules 2006, 39 (7), 2449-2451.
26. Jeong, S.-J.; Kim, J. Y.; Kim, B. H.; Moon, H.-S.; Kim, S. O., Directed self-assembly of block copolymers for next generation nanolithography. Materials Today 2013, 16 (12), 468-476.
27. Williams, K. R.; Gupta, K.; Wasilik, M., Etch rates for micromachining processing-Part II. Journal of Microelectromechanical Systems 2003, 12 (6), 761-778.
28. Henrie, J.; Kellis, S.; Schultz, S. M.; Hawkins, A., Electronic color charts for dielectric films on silicon. Opt. Express 2004, 12 (7), 1464-1469.
29. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R., Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89 (3), 035501.