研究生: |
林合真 Lin, Ho-Chen |
---|---|
論文名稱: |
利用蛋白質體學探究體外血腦障壁模組暴露奈米銀影響腦神經細胞退化之研究 A Proteomic Study of Neurodegenerative Effect of Exposure to Silver Nanoparticles in an in Vitro Blood-Brain Barrier Model |
指導教授: |
莊淳宇
Chuang, Chun-Yu |
口試委員: |
陳之碩
Chen, Chi-Shuo 何銘益 Ho, Ming-Yi 鄒粹軍 Tsou, Tsui-Chun 黃鈺軫 Huang, Yuh-Jeen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 奈米銀 、血腦障壁 、緊密連接蛋白 、類澱粉蛋白 、阿茲海默症 、蛋白質體學 |
外文關鍵詞: | silver nanoparticles, blood-brain barrier, tight junction protein, amyloid, Alzheimer’s disease, proteomics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米銀(silver nanoparticles, AgNPs)具有抗菌特性,由於廣泛應用於食物容器、牙膏及紡織物中,增加人類暴露AgNPs的機會。已有小鼠暴露實驗指出AgNPs可通過血腦障壁(blood-brain barrier, BBB)進入中樞神經系統,累積於腦部誘發活性氧化物質(reactive oxygen species, ROS)產生,導致神經細胞損傷。先前本研究室實驗亦發現單層培養小鼠神經元細胞暴露AgNPs後,會誘導類澱粉蛋白(amyloid beta, Aβ)生成,腦部Aβ沉積與臨床上阿茲海默症(Alzheimer’s disease, AD)病程發展有關。BBB是由腦血管內皮細胞的緊密連接蛋白(tight junction protein)建構而成之腦部屏障,圍繞在血管內皮細胞旁之神經膠質細胞能將通過BBB之物質經過篩選後供給神經元細胞使用。由於AgNPs暴露通過腦部細胞BBB後,對於影響神經膠質細胞和神經元細胞代謝功能,進而可能驅使AD發展在蛋白質體方面之探究仍不明確。因此,本研究以小鼠腦內皮細胞(mouse brain endothelial cells, bEnd.3)、小鼠腦星狀細胞(mouse brain astrocytes, ALT)及小鼠腦神經母細胞(mouse neuroblastoma neuro-2a cells, N2a)建構三層細胞之共培養系統,來模擬腦部細胞暴露AgNPs通過BBB之情形,並利用蛋白質體學(proteomics)探討暴露AgNPs是否改變神經元細胞內蛋白質生成,進一步瞭解受到影響之蛋白質是否與神經退化性疾病有關。此外,本研究亦探討星狀細胞及神經元細胞中Aβ生成以及血管內皮細胞清除Aβ能力,以觀察AgNPs是否影響代謝Aβ的能力。研究結果顯示AgNPs會破壞bEnd.3細胞緊密連接蛋白claudin-5及zona occludens-1 (ZO-1)之完整性和促使BBB通透性增加,能累積於ALT細胞及N2a細胞之細胞質中。蛋白質體學分析結果發現,N2a細胞暴露AgNPs後有298個蛋白質表現改變(differentially expressed proteins),這些蛋白質與脂肪酸(fatty acid)代謝有關聯性,其中棕櫚酸(palmitic acid)的增加可能會促使AD特徵蛋白Aβ生成。此外,AgNPs暴露會增加Aβ前驅蛋白(beta amyloid precursor protein, APP)生成,誘發Aβ生成相關之分泌酵素(secretase),如早老素1 (presenilin-1, PSEN1)、早老素2 (PSEN2)及β-分泌酵素(beta-site APP cleaving enzyme, BACE)剪切APP,造成Aβ40及Aβ42累積。另一方面,AgNPs暴露降低bEnd.3細胞中Aβ清除受器(receptor)的基因表現,包含p-醣蛋白 (p-glycoprotein, p-gp)及低密度脂蛋白受體相關蛋白-1 (low density lipoprotein receptor-related protein 1, LRP-1),導致類澱粉蛋白清除(Aβ clearance)能力降低。增加的Aβ堆積於N2a細胞表面,促進細胞分泌單核細胞趨化蛋白-1 (monocyte chemoattractant protein-1, MCP-1)及細胞激素介白素-6 (interleukin 6, IL-6),產生發炎反應及誘發N2a細胞自然凋亡(apoptosis)。因此,本研究推測AgNPs暴露會破壞腦內皮細胞緊密連接蛋白,增加BBB通透性,增加神經元細胞中棕櫚酸含量,促進Aβ生成並降低清除Aβ能力,導致Aβ累積及發炎反應,促使神經元細胞凋亡,此可能會誘發阿茲海默症病症之發展。
Silver nanoparticles (AgNPs) have the antibacterial feature, and widely used in daily supplies such as food container, toothpaste and textiles. Therefore, human may suffer the increased risk of exposure to AgNPs. Previous studies in mice exposure to AgNPs presented that AgNPs can enter the central nervous system through the blood-brain barrier (BBB), and accumulate in the brain to induce reactive oxygen species (ROS) and cause neural cells damage. Our previous study also has found that exposure to AgNPs increases amyloid beta (Aβ) generation in mouse mono-cultured neuronal cells. In clinical, the deposition of Aβ in the brain is a hallmark of the progression of Alzheimer’s disease (AD). The BBB is a brain barrier constructed by tight junction proteins of brain vascular endothelial cells. The astrocytes surrounding the vascular endothelial cells can select the substances passing through BBB to supply to the neuronal cells. Since the exposure of AgNPs can pass through BBB, whether AgNPs affect the metabolism of astrocytes and neuronal cells and subsequently lead to AD progression remains unclear in proteomic exploration. Thus, this study constructed a triple-cell coculture model using mouse brain endothelial (bEnd.3) cells, mouse brain astrocytes (ALT), and mouse neuroblastoma neuro-2a (N2a) cells to simulate the exposure of brain cells to AgNPs through BBB for investigating whether exposure to AgNPs alters protein production in neuronal cells, and further understanding whether these affected proteins were associated with neurodegenerative disease. Moreover, this study also explored the generation of Aβ in astrocytes and neuronal cells, and the clearance activity of Aβ in endothelial cells to observe whether AgNPs alter Aβ metabolism in the brain. The results of this study showed that AgNPs disrupted the integrity of tight junction proteins, claudin-5 and zona occludens-1 (ZO-1) to increase BBB permeability in bEnd.3 cells, and accumulated in the cytoplasm of ALT cells and N2a cells. The proteomic profiling of N2a cells after AgNPs exposure identified 298 differentially expressed proteins related to fatty acid metabolism. The AgNPs induced palmitic acid production might promote Aβ generation. In addition, exposure to AgNPs increased the protein expression of amyloid precursor protein (APP) and Aβ generation-related secretases, presenilin-1 (PSEN1), presenilin-2 (PSEN2), and beta-site APP cleaving enzyme (BACE), for APP cleavage to stimulate Aβ40 and Aβ42 accumulation. Additionally, AgNPs decreased the gene expression of Aβ clearance-related receptors, p-glycoprotein (p-gp) and low density lipoprotein receptor-related protein-1 (LRP-1), in bEnd.3 cells to attenuate the activity of Aβ clearance. The increased Aβ further aggregated on the surface of N2a cells to enhance the secretion of monocyte chemoattractant protein-1 (MCP-1) and interleukin 6 (IL-6), to induce inflammatory response and cause the programed cell death. Thus, this study suggested that exposure to AgNPs can disrupt tight junction proteins to increase BBB permeability of brain endothelial cells, and increase the production of palmitic acid and attenuate the Aβ clearance activity in neuronal cells to induce inflammation and apoptosis subsequently for AD progression.
Y. Lee, P. Kim, J. Yoon, B. Lee, K. Choi, K. H. Kil, and K. Park, Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology, 2013. 7(6): p. 1120-1130.
F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 2012. 14(9).
Silver Nanoparticles Market Size By Application (Healthcare & Lifesciences, Textiles, Electronics & IT, Food & Beverage), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, UK, France, Italy, Spain, Poland, Russia, Netherlands, China, India, Japan, South Korea, Australia, Indonesia, Malaysia, Brazil, Argentina, Mexico, Saudi Arabia, UAE, South Africa), Growth Potential, Price Trends, Competitive Market Share & Forecast, 2016 – 2024. Global Market Insights, 2017.
Q. L. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008. 42(18): p. 4591-4602.
X. Jiang and A. Yu, Low dimensional silver nanostructures: synthesis, growth mechanism, properties and applications. Journal of Nanoscience and Nanotechnology, 2010. 10(12): p. 7829-7875.
M. De, P. S. Ghosh, and V. M. Rotello, Applications of Nanoparticles in Biology. Advanced Materials, 2008. 20(22): p. 4225-4241.
C. Marambio-Jones, and E. M. V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010. 12(5): p. 1531-1551.
M. Raffi, F. Hussain, T. M. Bhatti, J. I. Akhter, A. Hameed, and M. M. Hasan, Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science & Technology, 2008. 24(2): p. 192-196.
C. Damm, H. Munstedt, and A. Rosch, The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Materials Chemistry and Physics, 2008. 108(1): p. 61-66.
L. Lu, R. W. Y. Sun, R. Chen, C. K. Hui, C. M. Ho, J. M. Luk, G. K. K. Lau, and C. M. Che, Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy, 2008. 13(2): p. 253-262.
J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman, Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 2005. 3: p. 6.
K. J. Kim, W. S. Sung, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee, Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology, 2008. 18(8): p. 1482-1484.
T. M. Benn and P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, 2008. 42(11): p. 4133-4139.
R. Ding, P. Yang, Y. Yang, Z. Yang, L. Luo, H. Li, and Q. Wang, Characterisation of silver release from nanoparticle-treated baby products. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 2018: p. 1-10.
M. A. Munger, P. Radwanski, G. C. Hadlock, G. Stoddard, A. Shaaban, J. Falconer, D. W. Grainger, and C. E. Deering-Rice, In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine, 2014. 10(1): p. 1-9.
J. H. Lee, J. Mun, J. D. Park, and I. J. Yu, A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology, 2012. 6(6): p. 667-669.
S. A. Armitage, M. A. White, and H. K. Wilson, The determination of silver in whole blood and its application to biological monitoring of occupationally exposed groups. Annals of Occupational Hygiene, 1996. 40(3): p. 331-338.
X. Chen. and H. J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicology Letters, 2008. 176(1): p. 1-12.
S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, and J. Heyder, Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect, 2001. 109 Suppl 4: p. 547-551.
J. H. Ji, J. H. Jung, S. S. Kim, J. U. Yoon, J. D. Park, B. S. Choi, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, J. H. Shin, J. H. Sung, K. S. Song, and I. J. Yu, Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 2007. 19(10): p. 857-871.
Y. M. Cho, Y. Mizuta, J. I. Akagi, T. Toyoda, M. Sone, and K. Ogawa, Size-dependent acute toxicity of silver nanoparticles in mice. Journal of Toxicologic Pathology, 2018. 31(1): p. 73-80.
L. L. Davenport, H. Hsieh, B. L. Eppert, V. S. Carreira, M. Krishan, T. Ingle, P. C. Howard, M. T. Williams, C. V. Vorhees, and M. B. Genter, Systemic and behavioral effects of intranasal administration of silver nanoparticles. Neurotoxicology and Teratology, 2015. 51: p. 68-76.
J. H. Lee, Y. S. Kim, K. S. Song, H. R. Ryu, J. H. Sung, J. D. Park, H. M. Park, N. W. Song, B. S. Shin, D. Marshak, K. Ahn, J. E. Lee, and I. J. Yu, Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Particle and Fibre Toxicology, 2013. 10: p. 36.
A. Speranza, R. Crinelli, V. Scoccianti, A. R. Taddei, M. Iacobucci, P. Bhattacharya, and P. C. Ke, In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 2013. 179: p. 258-267.
R. Foldbjerg, P. Olesen, M. Hougaard, D. A. Dang, H. J. Hoffmann, and H. Autrup, PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology Letters, 2009. 190(2): p. 156-162.
I. C. Chen, I. L. Hsiao, H. C. Lin, C. H. Wu, C. Y. Chuang, and Y. J. Huang, Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environmental Toxicology and Pharmacology, 2016. 47: p. 108-118.
T. Zhang, L. Wang, Q. Chen, and C. Chen, Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal, 2014. 55(2): p. 283-291.
P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009. 3(2): p. 279-290.
Q. H. Tran, V. Q. Nguyen, and A. T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences-Nanoscience and Nanotechnology, 2013. 4(3).
M. J. Moutin, J. J. Abramson, G. Salama, and Y. Dupont, Rapid Ag+-induced release of Ca2+ from sarcoplasmic reticulum vesicles of skeletal muscle: a rapid filtration study. Biochimica et Biophysica Acta, 1989. 984(3): p. 289-292.
S. Orrenius, M. J. McCabe, Jr., and P. Nicotera, Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicology Letters, 1992. 64-65 Spec No: p. 357-364.
S. Gaillet and J. M. Rouanet, Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms - A review. Food and Chemical Toxicology, 2015. 77: p. 58-63.
K. S. Kim, Mechanisms of microbial traversal of the blood-brain barrier. Nature Reviews Microbiology, 2008. 6(8): p. 625-634.
M. A. Lopez-Ramirez, R. Fischer, C. C. Torres-Badillo, H. A. Davies, K. Logan, K. Pfizenmaier, D. K. Male, B. Sharrack, and I. A. Romero, Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. The Journal of Immunology, 2012. 189(6): p. 3130-3139.
X. Y. Lian and J. L. Stringer, Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression. Brain Research, 2004. 1012(1-2): p. 177-184.
N. C. Danbolt, Glutamate uptake. Progress in Neurobiology, 2001. 65(1): p. 1-105.
P. Kaczor, D. Rakus, and J. W. Mozrzymas, Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes. Frontiers in Cellular Neuroscience, 2015. 9: p. 120.
T. W. Gardner, E. Lieth, S. A. Khin, A. J. Barber, D. J. Bonsall, T. Lesher, K. Rice, and W. A. Brennan, Jr., Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Investigative Ophthalmology & Visual Science, 1997. 38(11): p. 2423-2427.
A. Birbrair, T. Zhang, Z. M. Wang, M. L. Messi, A. Mintz, and O. Delbono, Pericytes at the intersection between tissue regeneration and pathology. Clinical Science, 2015. 128(2): p. 81-93.
D. Jansson, J. Rustenhoven, S. Feng, D. Hurley, R. L. Oldfield, P. S. Bergin, E. W. Mee, R. L. Faull, and M. Dragunow, A role for human brain pericytes in neuroinflammation. Journal of Neuroinflammation, 2014. 11: p. 104.
S. Dohgu, F. Takata, and Y. Kataoka, Brain pericytes regulate the blood-brain barrier function. Nihon Yakurigaku Zasshi, 2015. 146(1): p. 63-65.
Y. Wang, B. Wang, M. T. Zhu, M. Li, H. J. Wang, M. Wang, H. Ouyang, Z. F. Chai, W. Y. Feng, and Y. L. Zhao, Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicology Letters, 2011. 205(1): p. 26-37.
M. M. Mariani and T. Kielian, Microglia in infectious diseases of the central nervous system. Journal of NeuroImmune Pharmacology, 2009. 4(4): p. 448-461.
N. Weiss, F. Miller, S. Cazaubon, and P. O. Couraud, The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2009. 1788(4): p. 842-857.
https://www.webmd.com/brain/brain-damage-symptoms-causes-treatments#2.
H. Wolburg and A. Lippoldt, Tight junctions of the blood-brain barrier: development, composition and regulation. Vascular Pharmacology, 2002. 38(6): p. 323-337.
B. T. Hawkins and T. P. Davis, The blood-brain barrier/neurovascular unit in health and disease. Pharmacological Reviews, 2005. 57(2): p. 173-185.
G. J. Feldman, J. M. Mullin, and M. P. Ryan, Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews, 2005. 57(6): p. 883-917.
R. Alyautdin, I. Khalin, M. I. Nafeeza, M. H. Haron, and D. Kuznetsov, Nanoscale drug delivery systems and the blood-brain barrier. International Journal of Nanomedicine, 2014. 9: p. 795-811.
W. Y. Liu, Z. B. Wang, L. C. Zhang, X. Wei, and L. Li, Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neuroscience & Therapeutics, 2012. 18(8): p. 609-615.
Y. Yang and G. A. Rosenberg, Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke, 2011. 42(11): p. 3323-3328.
N. J. Abbott, A. A. Patabendige, D. E. Dolman, S. R. Yusof, and D. J. Begley, Structure and function of the blood-brain barrier. Neurobiology of Disease, 2010. 37(1): p. 13-25.
P. T. Ronaldson and T. P. Davis, Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Therapeutic delivery, 2011. 2(8): p. 1015-1041.
S. Tsukita and M. Furuse, Occludin and claudins in tight-junction strands: leading or supporting players? Trends in Cell Biology, 1999. 9(7): p. 268-273.
Y. Ando-Akatsuka, M. Saitou, T. Hirase, M. Kishi, A. Sakakibara, M. Itoh, S. Yonemura, M. Furuse, and S. Tsukita, Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. The Journal of Cell Biology, 1996. 133(1): p. 43-47.
E. Steed, N. T. Rodrigues, M. S. Balda, and K. Matter, Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Molecular and Cell Biology, 2009. 10: p. 95.
M. Saitou, M. Furuse, H. Sasaki, J. D. Schulzke, M. Fromm, H. Takano, T. Noda, and S. Tsukita, Complex phenotype of mice lacking occludin, a component of tight junction strands. Molecular Biology of the Cell, 2000. 11(12): p. 4131-4142.
D. Gunzel, Claudins and the modulation of tight junction permeability. Acta Physiologica, 2017. 219: p. 7-7.
G. Krause, L. Winkler, S. L. Mueller, R. F. Haseloff, J. Piontek, and I. E. Blasig, Structure and function of claudins. Biochimica et Biophysica Acta, 2008. 1778(3): p. 631-645.
S. Liebner, A. Fischmann, G. Rascher, F. Duffner, E. H. Grote, H. Kalbacher, and H. Wolburg, Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathologica, 2000. 100(3): p. 323-331.
H. Wolburg, K. Wolburg-Buchholz, J. Kraus, G. Rascher-Eggstein, S. Liebner, S. Hamm, F. Duffner, E. H. Grote, W. Risau, and B. Engelhardt, Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathologica, 2003. 105(6): p. 586-592.
T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki, N. Hashimoto, M. Furuse, and S. Tsukita, Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. Journal of Cell Biology, 2003. 161(3): p. 653-660.
S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, Tracing the endocytosis of claudin-5 in brain endothelial cells. Methods in Molecular Biology, 2011. 762: p. 303-320.
H. Chasiotis, D. Kolosov, P. Bui, and S. P. Kelly, Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: a review. Respiratory Physiology & Neurobiology, 2012. 184(3): p. 269-281.
M. W. Musch, M. M. Walsh-Reitz, and E. B. Chang, Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006. 290(2): p. G222-231.
C. X. Li and M. J. Poznansky, Characterization of the ZO-1 protein in endothelial and other cell lines. Journal of Cell Science, 1990. 97(Pt 2): p. 231-237.
K. Umeda, J. Ikenouchi, S. Katahira-Tayama, K. Furuse, H. Sasaki, M. Nakayama, T. Matsui, S. Tsukita, M. Furuse, and S. Tsukita, ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 2006. 126(4): p. 741-754.
J. Bednarczyk and K. Lukasiuk, Tight junctions in neurological diseases. Acta Neurobiologiae Experimentalis, 2011. 71(4): p. 393-408.
R. C. Brown, A. H. Lockwood, and B. R. Sonawane, Neurodegenerative diseases: an overview of environmental risk factors. Environmental Health Perspectives, 2005. 113(9): p. 1250-1256.
L. Struzynska and J. Skalska, Mechanisms Underlying Neurotoxicity of Silver Nanoparticles. Advances in Experimental Medicine and Biology, 2018. 1048: p. 227-250.
J. Skalska and L. Struzynska, Toxic effects of silver nanoparticles in mammals--does a risk of neurotoxicity exist? Folia Neuropathologica, 2015. 53(4): p. 281-300.
H. A. Esraa, Lina A. Salih, Effect of maternal exposure of silver nanoparticles on the histogenesis of cerebellum in post-implantation of albino rats embryos. Iraqi Journal of Science, 2018. 59(1B): p. 7.
Y. Liu, W. Guan, G. G. Ren, and Z. Yang, The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicology Letters, 2012. 209(3): p. 227-231.
K. Greish, A. A. Alqahtani, A. F. Alotaibi, A. M. Abdulla, A. T. Bukelly, F. M. Alsobyani, G. H. Alharbi, I. S. Alkiyumi, M. M. Aldawish, T. F. Alshahrani, V. Pittala, S. Taurin, and A. Kamal, The Effect of Silver Nanoparticles on Learning, Memory and Social Interaction in BALB/C Mice. International Journal of Environmental Research and Public Health, 2019. 16(1).
A. Sharma, D. F. Muresanu, R. Patnaik, and H. S. Sharma, Size- and Age-Dependent Neurotoxicity of Engineered Metal Nanoparticles in Rats. Molecular Neurobiology, 2013. 48(2): p. 386-396.
M. F. Rahman, J. Wang, T. A. Patterson, U. T. Saini, B. L. Robinson, G. D. Newport, R. C. Murdock, J. J. Schlager, S. M. Hussain, and S. F. Ali, Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicology Letters, 2009. 187(1): p. 15-21.
J. Skalska, M. Frontczak-Baniewicz, and L. Struzynska, Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology, 2015. 46: p. 145-154.
N. Y. Yin, Y. Zhang, Z. J. Yun, Q. Liu, G. B. Qu, Q. F. Zhou, L. G. Hu, and G. B. Jiang, Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicology Letters, 2015. 237(2): p. 112-120.
T. Maejima, P. Wollenweber, L. U. Teusner, J. L. Noebels, S. Herlitze, and M. D. Mark, Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. Journal of Neuroscience, 2013. 33(12): p. 5162-5174.
M. Dan, H. Wen, A. Shao, and L. Xu, Silver Nanoparticle Exposure Induces Neurotoxicity in the Rat Hippocampus Without Increasing the Blood-Brain Barrier Permeability. Journal of Biomedical Nanotechnology, 2018. 14(7): p. 1330-1338.
J. Tang, L. Xiong, G. Zhou, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, S. Lu, Z. Wan, L. Chou, and T. Xi, Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. Journal of Nanoscience and Nanotechnology, 2010. 10(10): p. 6313-6317.
W. J. Trickler, S. M. Lantz, R. C. Murdock, A. M. Schrand, B. L. Robinson, G. D. Newport, J. J. Schlager, S. J. Oldenburg, M. G. Paule, W. Slikker, Jr., S. M. Hussain, and S. F. Ali, Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences, 2010. 118(1): p. 160-170.
W. Wang, S. Lv, Y. Zhou, J. Fu, C. Li, and P. Liu, Tumor necrosis factor-alpha affects blood-brain barrier permeability in acetaminophen-induced acute liver failure. European Journal of Gastroenterology & Hepatology, 2011. 23(7): p. 552-558.
C. Sun, N. Y. Yin, R. X. Wen, W. Liu, Y. X. Jia, L. G. Hu, Q. F. Zhou, and G. B. Jiang, Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology, 2016. 52: p. 210-221.
K. Dziendzikowska, J. Gromadzka-Ostrowska, A. Lankoff, M. Oczkowski, A. Krawczynska, J. Chwastowska, M. Sadowska-Bratek, E. Chajduk, M. Wojewodzka, M. Dusinska, and M. Kruszewski, Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. Journal of Applied Toxicology, 2012. 32(11): p. 920-928.
R. Stocker, Induction of haem oxygenase as a defence against oxidative stress. Free Radical Research Communications, 1990. 9(2): p. 101-112.
E. Zeynalov, Z. A. Shah, R. C. Li, and S. Dore, Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiology of Disease, 2009. 35(2): p. 264-269.
L. Li, J. Cui, Z. Liu, X. Zhou, Z. Li, Y. Yu, Y. Jia, D. Zuo, and Y. Wu, Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicology Letters, 2018. 285: p. 156-167.
E. Zieminska, A. Stafiej, and L. Struzynska, The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology, 2014. 315: p. 38-48.
C. L. Huang, I. L. Hsiao, H. C. Lin, C. F. Wang, Y. J. Huang, and C. Y. Chuang, Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental Research, 2015. 136: p. 253-263.
C. Guo, L. Sun, X. Chen, and D. Zhang, Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 2013. 8(21): p. 2003-2014.
J. L. Tang, L. Xiong, G. F. Zhou, S. Wang, J. Y. Wang, L. Liu, J. G. Li, F. Q. Yuan, S. F. Lu, Z. Y. Wan, L. S. Chou, and T. F. Xi, Silver Nanoparticles Crossing Through and Distribution in the Blood-Brain Barrier In Vitro. Journal of Nanoscience and Nanotechnology, 2010. 10(10): p. 6313-6317.
L. M. Xu, M. Dan, A. L. Shao, X. Cheng, C. P. Zhang, R. A. Yokel, T. Takemura, N. Hanagata, M. Niwa, and D. Watanabe, Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. International Journal of Nanomedicine, 2015. 10: p. 6105-6119.
I. L. Hsiao, Y. K. Hsieh, C. Y. Chuang, C. F. Wang, and Y. J. Huang, Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking. Environmental Toxicology, 2017. 32(6): p. 1742-1753.
Hawkins, S. J., L. A. Crompton, A. Sood, M. Saunders, N. T. Boyle, A. Buckley, A. M. Minogue, S. F. McComish, N. Jimenez-Moreno, O. Cordero-Llana, P. Stathakos, C. E. Gilmore, S. Kelly, J. D. Lane, C. P. Case, and M. A. Caldwell, Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nature Nanotechnology, 2018. 13(5): p. 427-433.
G. S. Bloom, Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 2014. 71(4): p. 505-508.
S. Sinha and I. Lieberburg, Cellular mechanisms of beta-amyloid production and secretion. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(20): p. 11049-11053.
F. M. LaFerla, K. N. Green, and S. Oddo, Intracellular amyloid-beta in Alzheimer's disease. Nature Reviews Neuroscience, 2007. 8(7): p. 499-509.
H. Hampel and Y. Shen, Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer's disease. Scandinavian Journal of Clinical and Laboratory Investigation, 2009. 69(1): p. 8-12.
H. B. Cai, Y. S. Wang, D. McCarthy, H. J. Wen, D. R. Borchelt, D. L. Price, and P. C. Wong, BACE1 is the major beta-secretase for generation of A beta peptides by neurons. Nature Neuroscience, 2001. 4(3): p. 233-234.
Y. Luo, B. Bolon, S. Kahn, B. D. Bennett, S. Babu-Khan, P. Denis, W. Fan, H. Kha, J. H. Zhang, Y. H. Gong, L. Martin, J. C. Louis, Q. Yan, W. G. Richards, M. Citron, and R. Vassar, Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nature Neuroscience, 2001. 4(3): p. 231-232.
M. Smolarkiewicz, T. Skrzypczak, and P. Wojtaszek, The very many faces of presenilins and the gamma-secretase complex. Protoplasma, 2013. 250(5): p. 997-1011.
E. McGowan, F. Pickford, J. Kim, L. Onstead, J. Eriksen, C. Yu, L. Skipper, M. P. Murphy, J. Beard, P. Das, K. Jansen, M. DeLucia, W. L. Lin, G. Dolios, R. Wang, C. B. Eckman, D. W. Dickson, M. Hutton, J. Hardy, and T. Golde, Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 2005. 47(2): p. 191-199.
M. Citron, D. Westaway, W. Xia, G. Carlson, T. Diehl, G. Levesque, K. Johnson-Wood, M. Lee, P. Seubert, A. Davis, D. Kholodenko, R. Motter, R. Sherrington, B. Perry, H. Yao, R. Strome, I. Lieberburg, J. Rommens, S. Kim, D. Schenk, P. Fraser, P. St George Hyslop, and D. J. Selkoe, Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Medicine, 1997. 3(1): p. 67-72.
M. P. Murphy and H. LeVine, 3rd, Alzheimer's disease and the amyloid-beta peptide. Journal of Alzheimers Disease, 2010. 19(1): p. 311-323.
W. Wang, A. M. Bodles-Brakhop, and S. W. Barger, A Role for P-Glycoprotein in Clearance of Alzheimer Amyloid beta -Peptide from the Brain. Current Alzheimer Research, 2016. 13(6): p. 615-620.
J. M. Basak, P. B. Verghese, H. Yoon, J. Kim, and D. M. Holtzman, Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. Journal of Biological Chemistry, 2012. 287(17): p. 13959-13971.
R. Deane, R. D. Bell, A. Sagare, and B. V. Zlokovic, Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS & Neurological Disorders-Drug Targets, 2009. 8(1): p. 16-30.
K. Yamada, T. Hashimoto, C. Yabuki, Y. Nagae, M. Tachikawa, D. K. Strickland, Q. Liu, G. Bu, J. M. Basak, D. M. Holtzman, S. Ohtsuki, T. Terasaki, and T. Iwatsubo, The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. Journal of Biological Chemistry, 2008. 283(50): p. 34554-34562.
F. C. Lam, R. Liu, P. Lu, A. B. Shapiro, J. M. Renoir, F. J. Sharom, and P. B. Reiner, beta-Amyloid efflux mediated by p-glycoprotein. Journal of Neurochemistry, 2001. 76(4): p. 1121-1128.
M. Shibata, S. Yamada, S. R. Kumar, M. Calero, J. Bading, B. Frangione, D. M. Holtzman, C. A. Miller, D. K. Strickland, J. Ghiso, and B. V. Zlokovic, Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. Journal of Clinical Investigation, 2000. 106(12): p. 1489-1499.
J. R. Cirrito, R. Deane, A. M. Fagan, M. L. Spinner, M. Parsadanian, M. B. Finn, H. Jiang, J. L. Prior, A. Sagare, K. R. Bales, S. M. Paul, B. V. Zlokovic, D. Piwnica-Worms, and D. M. Holtzman, P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 2005. 115(11): p. 3285-3290.
M. R. Basha, W. Wei, S. A. Bakheet, N. Benitez, H. K. Siddiqi, Y. W. Ge, D. K. Lahiri, and N. H. Zawia, The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. Journal of Neuroscience, 2005. 25(4): p. 823-829.
J. Wu, M. R. Basha, B. Brock, D. P. Cox, F. Cardozo-Pelaez, C. A. McPherson, J. Harry, D. C. Rice, B. Maloney, D. Chen, D. K. Lahiri, and N. H. Zawia, Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. Journal of Neuroscience, 2008. 28(1): p. 3-9.
H. Gu, X. Wei, A. D. Monnot, C. V. Fontanilla, M. Behl, M. R. Farlow, W. Zheng, and Y. Du, Lead exposure increases levels of beta-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice. Neuroscience Letters, 2011. 490(1): p. 16-20.
M. Zuberek, T. M. Stepkowski, M. Kruszewski, and A. Grzelak, Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: Study on proliferating and post-mitotic LUHMES cells. Mechanisms of Ageing and Development, 2018. 171: p7-14.
T. Furuno, M. T. Landi, M. Ceroni, N. Caporaso, I. Bernucci, G. Nappi, E. Martignoni, E. Schaeffeler, M. Eichelbaum, M. Schwab, and U. M. Zanger, Expression polymorphism of the blood-brain barrier component P-glycoprotein (MDR1) in relation to Parkinson's disease. Pharmacogenetics, 2002. 12(7): p. 529-534.
S. Vogelgesang, I. Cascorbi, E. Schroeder, J. Pahnke, H. K. Kroemer, W. Siegmund, C. Kunert-Keil, L. C. Walker, and R. W. Warzok, Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics, 2002. 12(7): p. 535-541.
H. Y. Li, T. Karl, and B. Garner, Understanding the function of ABCA7 in Alzheimer's disease. Biochemical Society Transactions, 2015. 43: p. 920-923.
S. Katarzyna, G. Iwona , W. Iwona, The Effect of Silver Nanoparticles on the Scavenger Receptor-Scara1 on Microglia. Proceedings of the 2nd World Congress on Recent Advances in Nanotechnology (RAN’17), 2017: p. 1-2.
G. Li, M. J. Simon, L. M. Cancel, Z. D. Shi, X. Ji, J. M. Tarbell, B. Morrison, 3rd, and B. M. Fu, Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Annals of Biomedical Engineering, 2010. 38(8): p. 2499-2511.
J. R. Wisniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis. Nature Methods, 2009. 6(5): p. 359-362.
I. R. Leon, V. Schwammle, O. N. Jensen, and R. R. Sprenger, Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Molecular & Cellular Proteomics, 2013. 12(10): p. 2992-3005.
T. Masuda, M. Tomita, and Y. Ishihama, Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. Journal of Proteome Research, 2008. 7(2): p. 731-740.
K. P. Tan, M. Y. Ho, H. C. Cho, J. Yu, J. T. Hung, and A. L. Yu, Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells. Cell Death & Disease, 2016. 7(8): p. e2347.
I. Isobe, T. Watanabe, T. Yotsuyanagi, N. Hazemoto, K. Yamagata, T. Ueki, K. Nakanishi, K. Asai, and T. Kato, Astrocytic contributions to blood-brain barrier (BBB) formation by endothelial cells: A possible use of aortic endothelial cell for in vitro BBB model. Neurochemistry International, 1996. 28(5-6): p. 523-533.
L. Xu, M. Dan, A. Shao, X. Cheng, C. Zhang, R. A. Yokel, T. Takemura, N. Hanagata, M. Niwa, and D. Watanabe, Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. International Journal of Nanomedicine, 2015. 10: p. 6105-6119.
L. Chen, V. Chavan, K. Mukherjee, Internalization of scavenger receptor ligands by cortical neurons. Matters, 2017: p. 1-5.
J. H. Shannahan, W. Bai, and J. M. Brown, Implications of scavenger receptors in the safe development of nanotherapeutics. Receptors & Clinical Investigation, 2015. 2(3): p. e811.
J. H. Shannahan, R. Podila, A. A. Aldossari, H. Emerson, B. A. Powell, P. C. Ke, A. M. Rao, and J. M. Brown, Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicological Sciences, 2015. 143(1): p. 136-146.
L. Poulsen, M. Siersbaek, and S. Mandrup, PPARs: fatty acid sensors controlling metabolism. Seminars in Cell and Developmental Biology, 2012. 23(6): p. 631-639.
M. Aharoni-Simon, M. Hann-Obercyger, S. Pen, Z. Madar, and O. Tirosh, Fatty liver is associated with impaired activity of PPAR gamma-coactivator 1 alpha (PGC1 alpha) and mitochondrial biogenesis in mice. Laboratory Investigation, 2011. 91(7): p. 1018-1028.
S. Xiao, S. P. Anderson, C. Swanson, R. Bahnemann, K. A. Voss, A. J. Stauber, and J. C. Corton, Activation of peroxisome proliferator-activated receptor alpha enhances apoptosis in the mouse liver. Toxicological Sciences, 2006. 92(2): p. 368-377.
S. M. Richardson-Burns, D. J. Kominsky, and K. L. Tyler, Reovirus-induced neuronal apoptosis is mediated by caspase 3 and is associated with the activation of death receptors. Journal of Neurovirology, 2002. 8(5): p. 365-380.
J. E. Ulloth, C. A. Casiano, and M. De Leon, Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. Journal of Neurochemistry, 2003. 84(4): p. 655-668.
B. Kwon, H. K. Lee, and H. W. Querfurth, Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochimica et Biophysica Acta, 2014. 1843(7): p. 1402-1413.
Y. H. Hsiao, C. I. Lin, H. Liao, Y. H. Chen, and S. H. Lin, Palmitic Acid-Induced Neuron Cell Cycle G(2)/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells. International Journal of Molecular Sciences, 2014. 15(11): p. 20876-20899.
H. R. Park, J. Y. Kim, K. Y. Park, and J. Lee, Lipotoxicity of palmitic Acid on neural progenitor cells and hippocampal neurogenesis. Toxicological Research, 2011. 27(2): p. 103-110.
S. C. Benoit, C. J. Kemp, C. F. Elias, W. Abplanalp, J. P. Herman, S. Migrenne, A. L. Lefevre, C. Cruciani-Guglielmacci, C. Magnan, F. Yu, K. Niswender, B. G. Irani, W. L. Holland, and D. J. Clegg, Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. Journal of Clinical Investigation, 2009. 119(9): p. 2577-2589.
T. Hartmann, S. C. Bieger, B. Bruhl, P. J. Tienari, N. Ida, D. Allsop, G. W. Roberts, C. L. Masters, C. G. Dotti, K. Unsicker, and K. Beyreuther, Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides. Nature Medicine, 1997. 3(9): p. 1016-1020.
L. F. Maia, S. A. Kaeser, J. Reichwald, M. Lambert, U. Obermueller, J. Schelle, J. Odenthal, P. Martus, M. Staufenbiel, and M. Jucker, Increased CSF A during the very early phase of cerebral A deposition in mouse models. Embo Molecular Medicine, 2015. 7(7): p. 895-903.
D. M. Van Assema, M. Lubberink, M. Bauer, W. M. van der Flier, R. C. Schuit, A. D. Windhorst, E. F. Comans, N. J. Hoetjes, N. Tolboom, O. Langer, M. Muller, P. Scheltens, A. A. Lammertsma, and B. N. van Berckel, Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain, 2012. 135(Pt 1): p. 181-189.
A. Wolf, B. Bauer, and A. M. Hartz, ABC Transporters and the Alzheimer's Disease Enigma. Front Psychiatry, 2012. 3: p. 54.
L. B. Jaeger, S. Dohgu, M. C. Hwang, S. A. Farr, M. P. Murphy, M. A. Fleegal-DeMotta, J. L. Lynch, S. M. Robinson, M. L. Niehoff, S. N. Johnson, V. B. Kumar, and W. A. Banks, Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. Journal of Alzheimers Disease, 2009. 17(3): p. 553-570.
N. S. Patel, D. Paris, V. Mathura, A. N. Quadros, F. C. Crawford, and M. J. Mullan, Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. Journal of Neuroinflammation, 2005. 2(1): p. 1-10.
J. J. Palop and L. Mucke, Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nature Neuroscience, 2010. 13(7): p. 812-818.
S. Shadfar, C. J. Hwang, M. S. Lim, D. Y. Choi, and J. T. Hong, Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Archives of Pharmacal Research, 2015. 38(12): p. 2106-2119.
J. Miklossy and P. L. McGeer, Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY), 2016. 8(4): p. 575-588.
E. Corsini, A. Dufour, E. Ciusani, M. Gelati, S. Frigerio, A. Gritti, L. Cajola, G. L. Mancardi, G. Massa, and A. Salmaggi, Human brain endothelial cells and astrocytes produce IL-1 beta but not IL-10. Scandinavian Journal of Immunology, 1996. 44(5): p. 506-511.
M. N. Ajuebor, R. J. Flower, R. Hannon, M. Christie, K. Bowers, A. Verity, and M. Perretti, Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. Journal of Leukocyte Biology, 1998. 63(1): p. 108-116.
M. Johnstone, A. J. Gearing, and K. M. Miller, A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. Journal of Neuroimmunology, 1999. 93(1-2): p. 182-193.
T. Katayama, M. Minami, M. Nakamura, M. Ito, H. Katsuki, A. Akaike, and M. Satoh, Excitotoxic injury induces production of monocyte chemoattractant protein-1 in rat cortico-striatal slice cultures. Neuroscience Letters, 2002. 328(3): p. 277-280.
A. J. Sawyer, W. Tian, J. K. Saucier-Sawyer, P. J. Rizk, W. M. Saltzman, R. V. Bellamkonda, and T. R. Kyriakides, The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials, 2014. 35(25): p. 6698-6706.
S. M. Stamatovic, R. F. Keep, S. L. Kunkel, and A. V. Andjelkovic, Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. Journal of Cell Science, 2003. 116(Pt 22): p. 4615-4628.
S. M. Stamatovic, P. Shakui, R. F. Keep, B. B. Moore, S. L. Kunkel, N. Van Rooijen, and A. V. Andjelkovic, Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. Journal of Cerebral Blood Flow & Metabolism, 2005. 25(5): p. 593-606.
S. S. Cohen, M. Min, E. E. Cummings, X. Chen, G. B. Sadowska, S. Sharma, and B. S. Stonestreet, Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. Neuroimmunomodulation, 2013. 20(5): p. 264-273.
M. Kitazawa, H. W. Hsu, and R. Medeiros, Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta. Toxicological Sciences, 2016. 152(1): p. 194-204.
M. Iqbal, S. Baello, M. Javam, M. C. Audette, W. Gibb, and S. G. Matthews, Regulation of Multidrug Resistance P-Glycoprotein in the Developing Blood-Brain Barrier: Interplay between Glucocorticoids and Cytokines. Journal of Neuroendocrinology, 2016. 28(3): p. 1-9.
D. Galimberti, C. Fenoglio, C. Lovati, E. Venturelli, I. Guidi, B. Corra, D. Scalabrini, F. Clerici, C. Mariani, N. Bresolin, and E. Scarpini, Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer's disease. Neurobiology of Aging, 2006. 27(12): p. 1763-1768.
I. M. Cojocaru, M. Cojocaru, G. Miu, and V. Sapira, Study of interleukin-6 production in Alzheimer's disease. Romanian Journal of Internal Medicine, 2011. 49(1): p. 55-58.
Papadimitriou, Dimitra, S. Phani, A. Jacquier, V. LeVerche, R. Pradhan, S. Kariya, U. Monani, D. Re, and S. Przedborski, Astrocyte mediated toxicity leads to motor neuron death in Spinal Muscular Atrophy (S17.006). Neurology, 2015. 84(14): p. 1.
C. Fiebig, S. Keiner, B. Ebert, I. Schaffner, R. Jagasia, D. C. Lie, and R. Beckervordersandforth, Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion. Frontiers in Molecular Neuroscience, 2019. 12: p. 40.
E. M. Luther, M. M. Schmidt, J. Diendorf, M. Epple, and R. Dringen, Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochemical Research, 2012. 37(8): p. 1639-1648.
B. Ruttkay-Nedecky, L. Nejdl, J. Gumulec, O. Zitka, M. Masarik, T. Eckschlager, M. Stiborova, V. Adam, and R. Kizek, The role of metallothionein in oxidative stress. International Journal of Molecular Sciences, 2013. 14(3): p. 6044-6066.
M. Y. Fong, W. Zhou, L. Liu, A. Y. Alontaga, M. Chandra, J. Ashby, A. Chow, S. T. O'Connor, S. Li, A. R. Chin, G. Somlo, M. Palomares, Z. Li, J. R. Tremblay, A. Tsuyada, G. Sun, M. A. Reid, X. Wu, P. Swiderski, X. Ren, Y. Shi, M. Kong, W. Zhong, Y. Chen, and S. E. Wang, Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 2015. 17(2): p. 183-194.
J. Leverenz and S. M. Sumi, Parkinson's disease in patients with Alzheimer's disease. Archives of neurology, 1986. 43(7): p. 662-664.
A. R. Saha, J. Hill, M. A. Utton, A. A. Asuni, S. Ackerley, A. J. Grierson, C. C. Miller, A. M. Davies, V. L. Buchman, B. H. Anderton, and D. P. Hanger, Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. Journal of Cell Science, 2004. 117(7): p. 1017-1024.
K. Ueda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, D. A. C. Otero, J. Kondo, Y. Ihara, and T. Saitoh, Molecular-Cloning of Cdna-Encoding an Unrecognized Component of Amyloid in Alzheimer-Disease. Proceedings of the National Academy of Sciences of the United States of America. 90(23): p. 11282-11286.
J. Olah, O. Vincze, D. Virok, D. Simon, Z. Bozso, N. Tokesi, I. Horvath, E. Hlavanda, J. Kovacs, A. Magyar, M. Szucs, F. Orosz, B. Penke, and J. Ovadi, Interactions of Pathological Hallmark Proteins TUBULIN POLYMERIZATION PROMOTING PROTEIN/p25, beta-AMYLOID, AND alpha-SYNUCLEIN. Journal of Biological Chemistry, 2011. 286(39): p. 34088-34100.
S. Majd, F. Chegini, T. Chataway, X. F. Zhou, and W. P. Gai, Reciprocal Induction Between alpha-Synuclein and beta-Amyloid in Adult Rat Neurons. Neurotoxicity Research, 2013. 23(1): p. 69-78.
G. Gallardo, O. M. Schluter, and T. C. Sudhof, A molecular pathway of neurodegeneration linking alpha-synuclein to ApoE and Abeta peptides. Nature Neuroscience, 2008. 11(3): p. 301-308.
S. N. Gomperts, J. J. Locascio, D. Rentz, A. Santarlasci, M. Marquie, K. A. Johnson, and J. H. Growdon, Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology, 2013. 80(1): p. 85-91.
D. Senyilmaz, S. Virtue, X. Xu, C. Y. Tan, J. L. Griffin, A. K. Miller, A. Vidal-Puig, and A. A. Teleman, Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature, 2015. 525(7567): p. 124-128.
J. Nunnari and A. Suomalainen, Mitochondria: in sickness and in health. Cell, 2012. 148(6): p. 1145-1159.
R. Bajracharya, S. Bustamante, and J. W. O. Ballard, Stearic acid supplementation in high protein to carbohydrate (P:C) ratio diet improves physiological and mitochondrial functions of Drosophila melanogaster parkin null mutants. The journals of gerontology. Series A, Biological sciences and medical sciences, 2017. p.1-9.
D. R. Thal, The role of astrocytes in amyloid beta-protein toxicity and clearance. Experimental Neurology, 2012. 236(1): p. 1-5.
T. Kanekiyo, J. R. Cirrito, C. C. Liu, M. Shinohara, J. Li, D. R. Schuler, M. Shinohara, D. M. Holtzman, and G. Bu, Neuronal clearance of amyloid-beta by endocytic receptor LRP1. Journal of Neuroscience, 2013. 33(49): p. 19276-19283.
J. Kim, J. M. Castellano, H. Jiang, J. M. Basak, M. Parsadanian, V. Pham, S. M. Mason, S. M. Paul, and D. M. Holtzman, Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. Neuron, 2009. 64(5): p. 632-644.
L. B. Hersh and D. W. Rodgers, Neprilysin and amyloid beta peptide degradation. Current Alzheimer Research, 2008. 5(2): p. 225-231.
W. Farris, S. Mansourian, Y. Chang, L. Lindsley, E. A. Eckman, M. P. Frosch, C. B. Eckman, R. E. Tanzi, D. J. Selkoe, and S. Guenette, Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences of the United States, 2003. 100(7): p. 4162-4167.
H. Kadowaki, H. Nishitoh, F. Urano, C. Sadamitsu, A. Matsuzawa, K. Takeda, H. Masutani, J. Yodoi, Y. Urano, T. Nagano, and H. Ichijo, Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death & Differentiation, 2005. 12(1): p. 19-24.
H. Takuma, T. Tomiyama, K. Kuida, and H. Mori, Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. Journal of Neuropathology & Experimental Neurology, 2004. 63(3): p. 255-261.