研究生: |
江曲涵 Chiang, Chu-Harn |
---|---|
論文名稱: |
Cation−π作用力誘導膠原蛋白異源三股螺旋之摺疊探討 Study of Cation−π Interaction Induced Folding of the Collagen Heterotrimers |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
江昀緯
Chiang, Yun-Wei 朱立岡 Chu, Li-Kang 陳平 Cheng, Ping 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 131 |
中文關鍵詞: | 膠原蛋白模擬胜肽 、異源三股螺旋 、陽離子−π作用力 、圓二色光譜儀 、摺疊熱力學 |
外文關鍵詞: | collagen mimetic peptides, heterotrimer, cation−π interactions, circular dichroism, folding thermodynamics |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是人體內含量最豐富的蛋白,其之所以被廣泛用於生醫材料上是因為它對於人體的相容性佳,應用於人體醫學可在體內被酵素自然分解吸收,且無毒性。在生醫應用方面,分子大小過長的模擬膠原蛋白胜肽不僅製作成本較高,且其結構複雜而難以掌控,因此在研究上我們首要目標便是選用胜肽鏈越短越好,效果卻不變的模擬膠原蛋白胜肽鏈來研究。膠原蛋白是由三條多胜肽鏈所組成的,而此三條多胜肽鏈相互平行沿著同一方向軸相互纏繞成右手螺旋的三股螺旋結構,彼此利用氫鍵緊密地結合。三條螺旋結構的組成方式不僅有同源三股螺旋,也有異源三股螺旋。異源三股螺旋可細分為兩條α1和一條α2所組成的AAB型以及三條皆不同的ABC型。第一型膠原蛋白是人體內含量最多的膠原蛋白屬於AAB型,因此對於異源三股螺旋結構的探討,可以幫助我們更了解天然膠原蛋白,而本論文主要即為探討關於膠原蛋白異源三股螺旋結構的形成及其穩定性。膠原蛋白是由序列中包含三種主要的天然胺基酸重複排列而成的,取代其中幾個胺基酸可以大大的改變其特性。膠原蛋白本身可以進行自組裝,利用在序列中置換含有苯環結構以及帶有正電荷官能基的胺基酸,能使其產生陽離子−π作用力增加結構的穩定性。經由設計過的序列可以誘導異源三股螺旋的形成,再利用核磁共振儀分析其結構,並利用圓二色光譜儀進行動力學的實驗、示差掃描熱量分析儀進行熱力學實驗。
我們利用含有陽離子(精胺酸,賴胺酸)或芳香族(苯丙胺酸,酪胺酸)官能基的胺基酸來建立陽離子−π作用力。我們設計了三個異源三股螺旋系統,第一部分是將陽離子−π作用力平均分散在目標序列中,第二部分是將陽離子−π作用力集中於序列的碳端,第三個系統則是綜合了前兩者再加以設計。在第一個系統中,我們成功的使陽離子−π相互作用誘導AAB型異源三股螺旋的形成,並且通過控制陽離子和芳香肽在溶液中的混合比例,可以獲得不同類型的異源三聚體;熱力學的分析顯示,這些異源三股螺旋的摺疊是焓效應所主導的。在第二個系統中,光譜結果顯示在精胺酸(CR)-苯丙胺酸(CF)和賴胺酸(CK)-苯丙胺酸(CF)混合物中均可形成AAB型異源三股螺旋,顯示碳端陽離子−π相互作用力可以促進異源三股螺旋的摺疊;特別的是,在每種混合物中我們都只發現單一為主的異源三股螺旋。對於CR-CF混合物,取決於溶液中CR與CF的莫耳濃度比,我們可以製備具有兩條CR鏈和一條CF鏈的異源三股螺旋或是具有一條CR鏈和兩條CF鏈的異源三股螺旋,而CK-CF混合後則可形成兩條CK鏈和一條CF鏈的異源三股螺旋。此外,差示掃描量熱分析顯示這些異源三股螺旋的摺疊是受到熵效應所主導。而在第三個系統中,我們成功利用陽離子−π相互作用誘導ABC型異源三股螺旋的產生,並且佐以核磁共振光譜證明之。本論文成功的利用陽離子−π作用力誘導膠原蛋白模擬胜肽形成異源三股螺旋,並對它們的摺疊熱力學提供新的見解。
Collagen is the most predominant component of the extracellular matrix. Exploring the forces to assemble synthetic collagen mimetic peptides (CMPs) into trimers has been an attractive topic in preparing collagen-related biomaterials. Natural collagens consist of all identical (AAA, homotrimer), two different (AAB, heterotrimer), or three different (ABC, heterotrimer) peptide chains. Many natural collagens are either AAB- or ABC-type heterotrimers, making heterotrimeric helices better mimics for studying such collagen structures in nature. We prepared CMPs containing cationic (Arg, Lys) or aromatic (Phe, Tyr) residues to explore the folding of collagen heterotrimers via cation−π interactions. We designed three systems of CMPs, the first two systems focus on generating AAB-type heterotrimers by interspersed cation−π interactions and C-terminal multiple cation−π interactions. The third system shows how ABC-type heterotrimer was brought out by cation−π interactions.
In the first system, circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) measurements showed that the interchain cation−π interactions between cationic and aromatic peptides could induce AAB-type heterotrimer formation. By controlling the mixing molar ratios of cationic and aromatic peptides in solution, we could obtain the heterotrimers with various compositions. The thermodynamic results revealed that the folding of such heterotrimers is an enthalpy-driven process, which directly showed the contribution of cation−π interactions to the folding of an AAB-type heterotrimer. In the second system, CD and NMR spectroscopy showed that heterotrimers (CR-CF) and (CK-CF) could be induced by the C-terminal multiple pairwise Arg-Phe and Lys-Phe interactions, suggesting that the C-terminal cation−π interactions between cationic and aromatic residues could serve as a nucleation force and substantially promote the folding of heterotrimers. In particular, only one major heterotrimeric fold was found in this system. For CR−CF mixtures, either the heterotrimer with two CR chains and one CF chain or that with one CR chain and two CF chains could form, depending on the molar ratios of CR to CF in solution. By contrast, in CK−CF mixtures only the heterotrimer consisting of two CK chains and one CF chain was found in solution even increasing the ratio of CF, implying that the heterotrimer composed of one CK chain and two CF chains is highly unstable. Additionally, DSC analysis showed that the folding of these heterotrimers is governed by entropic effects. In the third system, we used NMR to identify the composition of different heterotrimers by inlaying different numbers of 15N-isotopically enriched glycine in each peptide. The formation of a cation−π interaction induced ABC-type heterotrimer, which the interacting pairs were concentrated at both the N- and C-termini, was confirmed by NMR.
Together, we have demonstrated the effectiveness of cation−π interactions as a force to fold collagen heterotrimers and revealed new insights into their folding thermodynamics. We also provide a new level of structural details that were not achieved for ABC-type collagen heterotrimers before.
1. Trevitt, C. R.; Singh, P. N., Variant Creutzfeldt-Jakob disease pathology, epidemiology, and public health implications. Am. J. Clin. Nutr. 2003, 78, 651S-656S.
2. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958.
3. (A) Ward, L. M.; Lalic, L.; Roughley, P. J.; Glorieux, F. H., Thirty-three novel COL1A1 and COL1A2 mutations in patients with osteogenesis imperfecta types I-IV. Hum. Mutat. 2001, 17, 434-434; (B) Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G. E.; Hermanns-Le, T.; De Paepe, A., Classical Ehlers-Danlos syndrome caused by a mutation in type I Am. J. Hum. Genet. 2000, 66, 1398–1402.
4. Brinckmann, J., Collagens at a glance. In Collagen: Primer in structure, processing and assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 1-6.
5. Myllyharju, J.; Kivirikko, K. I., Collagens and collagen-related diseases. Ann. Med. 2001, 33, 7-21.
6. Fitzgerald, J.; Rich, C.; Zhou, F. H.; Hansen, U., Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J. Biol. Chem. 2008, 283, 20170-20180.
7. Veit, G.; Kobbe, B.; Keene, D. R.; Paulsson, M.; Koch, M.; Wagener, R., Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J. Biol. Chem. 2006, 281, 3494-3504.
8. Nemoto, T.; Horiuchi, M.; Ishiguro, N.; Shinagawa, M., Detection methods of possible prion contaminants in collagen and gelatin. Arch. Virol. 1999, 144, 177-184.
9. Cowan, P. M.; McGavin, S.; North, A. C., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064.
10. Okuyama, K.; Xu, X.; Iguchi, M.; Noguchi, K., Revision of collagen molecular structure. Biopolymers 2006, 84, 181-191.
11. Ramshaw, J. A.; Shah, N. K.; Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86–91.
12. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81.
13. Bella, J.; Berman, H. M., Crystallographic evidence for C alpha-H...O=C hydrogen bonds in a collagen triple helix. J. Mol. Biol. 1996, 264, 734-742.
14. Bella, J.; Brodsky, B.; Berman, H. M., Hydration structure of a collagen peptide. Structure 1995, 3, 893-906.
15. Brodsky, B.; Ramshaw, J. A., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
16. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
17. Fields, G. B.; Prockop, D. J., Perspectives on the synthesis and application of triple-helical, collagen-model peptides. Biopolymers 1996, 40, 345-357.
18. Brodsky, B.; Persikov, A. V., Molecular structure of the collagen triple helix. Adv. Protein Chem. 2005, 70, 301-339.
19. Huang, H.-M. The microcalorimetric study of the contributions of hydrophobic interaction effect: The protein bindingmechanisms between proteins and resins,and the protein solution behaviors. National Central University, 2002.
20. Dougherty, D. A., Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
21. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics: electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
22. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA 1996, 93, 10566-10571.
23. (A) Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919; (B) Caldwell, J. W.; Kollman, P. A., Cation-π interactions: nonadditive effects are critical in their accurate representation. J. Am. Chem. Soc. 1995, 117, 4177-4178.
24. Dougherty, D. A., Cation-π interactions involving aromatic amino acids. J. Nutr. 2007, 137, 1504S-1508S.
25. Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J. Phys. Chem. 1981, 85, 1814-1820.
26. Mahadevi, A. S.; Sastry, G. N., Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100-2138.
27. Petti, M. A.; Shepodd, T. J.; Barrans, R. E.; Dougherty, D. A., "Hydrophobic" binding of water-soluble guests by high-symmetry, chiral hosts. An electron-rich receptor site with a general affinity for quaternary ammonium compounds and electron-deficient π systems. J. Am. Chem. Soc. 1988, 110, 6825-6840.
28. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Am. Chem. Soc. 1986, 108, 6085-6087.
29. Shepodd, T. J.; Petti, M. A.; Dougherty, D. A., Molecular recognition in aqueous media: Donor-acceptor and ion-dipole interactions produce tight binding for highly soluble guests. J. Am. Chem. Soc. 1988, 110, 1983-1985.
30. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I., Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991, 253, 872-879.
31. Murayama, K.; Aoki, K., Molecular recognition involving multiple cation-π interactions: the inclusion of the acetylcholine trimethylammonium moiety in resorcin[4]arene. Chem. Commun. 1997, 119-120.
32. (A) Chipot, C.; Maigret, B.; Pearlman, D. A.; Kollman, P. A., Molecular dynamics potential of mean force calculations: A study of the toluene−ammonium π-cation interactions. J. Am. Chem. Soc. 1996, 118, 2998-3005; (B) Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324.
33. Gallivan, J. P.; Dougherty, D. A., Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464.
34. (A) Burley, S. K.; Petsko, G. A., Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 1985, 229, 23; (B) Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139–143.
35. Burley, S. K.; Petsko, G. A., Weakly polar interactions in proteins. Adv. Protein Chem. 1988, 39, 125-189.
36. Mitchell, J. B. O.; Nandi, C. L.; McDonald, I. K.; Thornton, J. M.; Price, S. L., Amino/aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding? J. Mol. Biol. 1994, 239, 315–331.
37. (A) Slutsky, M. M.; Marsh, E. N. G., Cation–π interactions studied in a model coiled‐coil peptide. Protein Sci. 2004, 13, 2244-2251; (B) Andrew, C. D.; Bhattacharjee, S.; Kokkoni, N.; Hirst, J. D.; Jones, G. R.; Doig, A. J., Stabilizing interactions between aromatic and basic side chains in α-helical peptides and proteins. Tyrosine effects on helix circular dichroism. J. Am. Chem. Soc. 2002, 124, 12706-12714; (C) Andrew, C. D.; Penel, S.; Jones, G. R.; Doig, A. J., Stabilizing nonpolar/polar side‐chain interactions in the α‐helix. Proteins: Structure, Function, and Bioinformatics 2001, 45, 449-455; (D) Barbaras, D.; Gademann, K., Stable β turns of tripeptides in water through cation–π interactions. ChemBioChem 2008, 9, 2398-2401; (E) Burghardt, T. P.; Juranić, N.; Macura, S.; Ajtai, K., Cation–π interaction in a folded polypeptide. Biopolymers 2002, 63, 261-272; (F) Hughes, R. M.; Benshoff, M. L.; Waters, M. L., Effects of chain length and N‐methylation on a cation–π interaction in a β‐hairpin peptide. Chem. Eur. J. 2007, 13, 5753-5764; (G) Hughes, R. M.; Waters, M. L., Arginine methylation in a β-hairpin peptide: implications for Arg−π interactions, ΔCp°, and the cold denatured state. J. Am. Chem. Soc. 2006, 128, 12735-12742; (H) Hughes, R. M.; Waters, M. L., Effects of lysine acetylation in a β-hairpin peptide: comparison of an amide−π and a cation−π interaction. J. Am. Chem. Soc. 2006, 128, 13586-13591; (I) Olson, C. A.; Shi, Z.; Kallenbach, N. R., Polar interactions with aromatic side chains in α-helical peptides: Ch···O H-bonding and cation−π interactions. J. Am. Chem. Soc. 2001, 123, 6451-6452; (J) Orner, B. P.; Salvatella, X.; Quesada, J. S.; Mendoza, J. d.; Giralt, E.; Hamilton, A. D., De novo protein surface design: use of cation–π interactions to enhance binding between an α‐helical peptide and a cationic molecule in 50 % aqueous solution. Angew. Chem. Int. Ed. 2002, 41, 117-119; (K) Pletneva, E. V.; Laederach, A. T.; Fulton, D. B.; Kostić, N. M., The role of cation−π interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. J. Am. Chem. Soc. 2001, 123, 6232-6245; (L) Shi, Z.; Olson, C. A.; Kallenbach, N. R., Cation−π interaction in model α-helical peptides. J. Am. Chem. Soc. 2002, 124, 3284-3291; (M) Tatko, C. D.; Waters, M. L., The geometry and efficacy of cation–π interactions in a diagonal position of a designed β‐hairpin. Protein Sci. 2003, 12, 2443-2452; (N) Tsou, L. K.; Tatko, C. D.; Waters, M. L., Simple cation−π interaction between a phenyl ring and a protonated amine stabilizes an α-helix in water. J. Am. Chem. Soc. 2002, 124, 14917-14921.
38. Riemen, A. J.; Waters, M. L., Design of highly stabilized β-hairpin peptides through cation−π interactions of lysine and N-methyllysine with an aromatic pocket. Biochemistry 2009, 48, 1525-1531.
39. Riemen, A. J.; Waters, M. L., Dueling post-translational modifications trigger folding and unfolding of a β-hairpin peptide. J. Am. Chem. Soc. 2010, 132, 9007-9013.
40. Wei, Y.; Horng, J.-C.; Vendel, A. C.; Raleigh, D. P.; Lumb, K. J., Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP. Biochemistry 2003, 42, 7044-7049.
41. (A) Fiori, S.; Saccà, B.; Moroder, L., Structural properties of a collagenous heterotrimer that mimics the collagenase cleavage site of collagen type I. J. Mol. Biol. 2002, 319, 1235-1242; (B) Koide, T.; Nishikawa, Y.; Takahara, Y., Synthesis of heterotrimeric collagen models containing Arg residues in Y-positions and analysis of their conformational stability. Bioorg. Med. Chem. Lett. 2004, 14, 125-128; (C) Ottl, J.; Battistuta, R.; Pieper, M.; Tschesche, H.; Bode, W.; Kuhn, K.; Moroder, L., Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot. Models for collagen catabolism by matrix-metalloproteases. FEBS Lett. 1996, 398, 31-36; (D) Slatter, D. A.; Foley, L. A.; Peachey, A. R.; Nietlispach, D.; Farndale, R. W., Rapid synthesis of a register-specific heterotrimeric type I collagen helix encompassing the integrin alpha2beta1 binding site. J. Mol. Biol. 2006, 359, 289-298.
42. Li, Y.; Mo, X.; Kim, D.; Yu, S. M., Template-tethered collagen mimetic peptides for studying heterotrimeric triple-helical interactions. Biopolymers 2011, 95, 94-104.
43. Lebruin, L. T.; Banerjee, S.; O'Rourke, B. D.; Case, M. A., Metal ion-assembled micro-collagen heterotrimers. Biopolymers 2011, 95, 792-800.
44. Madhan, B.; Xiao, J.; Thiagarajan, G.; Baum, J.; Brodsky, B., NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 2008, 130, 13520-13521.
45. (A) Gauba, V.; Hartgerink, J. D., Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 2007, 129, 2683-2690; (B) Gauba, V.; Hartgerink, J. D., Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034-15041.
46. Persikov, A. V.; Ramshaw, J. A.; Kirkpatrick, A.; Brodsky, B., Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 2005, 44, 1414-1422.
47. (A) Fallas, J. A.; O'Leary, L. E. R.; Hartgerink, J. D., Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chem. Soc. Rev. 2010, 39, 3510-3527; (B) Jalan, A. A.; Hartgerink, J. D., Pairwise interactions in collagen and the design of heterotrimeric helices. Curr. Opin. Chem. Biol. 2013, 17, 960-967.
48. (A) Persikov, A. V.; Ramshaw, J. A.; Kirkpatrick, A.; Brodsky, B., Peptide investigations of pairwise interactions in the collagen triple-helix. J. Mol. Biol. 2002, 316, 385-394; (B) Fallas, J. A.; Hartgerink, J. D., Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 2012, 3, 1087; (C) Giddu, S.; Xu, F.; Nanda, V., Sequence recombination improves target specificity in a redesigned collagen peptide abc-type heterotrimer. Proteins 2013, 81, 386-393; (D) Jalan, A. A.; Demeler, B.; Hartgerink, J. D., Hydroxyproline-free single composition ABC collagen heterotrimer. J. Am. Chem. Soc. 2013, 135, 6014-6017.
49. (A) Cejas, M. A.; Kinney, W. A.; Chen, C.; Leo, G. C.; Tounge, B. A.; Vinter, J. G.; Joshi, P. P.; Maryanoff, B. E., Collagen-related peptides: Self-assembly of short, single strands into a functional biomaterial of micrometer scale. J. Am. Chem. Soc. 2007, 129, 2202-2203; (B) Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B., Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 2009, 48, 7959-7968.
50. (A) Mizuno, K.; Hayashi, T.; Bächinger, H. P., Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position. J. Biol. Chem. 2003, 278, 32373-32379; (B) Radmer, R. J.; Klein, T. E., Triple helical structure and stabilization of collagen-like molecules with 4(R)-hydroxyproline in the Xaa position. Biophys. J. 2006, 90, 578-588.
51. Chen, C. C.; Hsu, W.; Hwang, K. C.; Hwu, J. R.; Lin, C. C.; Horng, J. C., Contributions of cation-π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
52. (A) Burley, S. K.; Petsko, G. A., Amino‐aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143; (B) Flocco, M. M.; Mowbray, S. L., Planar stacking interactions of arginine and aromatic side-chains in proteins. J. Mol. Biol. 1994, 235, 709-717; (C) Minoux, H.; Chipot, C., Cation−π interactions in proteins: Can simple models provide an accurate description? J. Am. Chem. Soc. 1999, 121, 10366-10372.
53. (A) Fessler, L. I.; Fessler, J. H., Protein assembly of procollagen and effects of hydroxylation. J. Biol. Chem. 1974, 249, 7637-7646; (B) Bächingerg, H. P.; Fessler, L. I.; Timpl, R.; Fessler, J. H., Chain assembly intermediate in the biosynthesis of type III procollagen in chick embryo blood vessels. J Biol. Chem. 1981, 256, 13193-13199; (C) Doege, K. J.; Fessler, J. H., Folding of carboxyl domain and assembly of procollagen I. J Biol. Chem. 1986, 261, 8924-8935; (D) Dion, A. S.; Myers, J. C., COOH-terminal propeptides of the major human procollagens. Structural, functional and genetic comparisons. J Mol. Biol. 1987, 193, 127-143.
54. Bhate, M.; Wang, X.; Baum, J.; Brodsky, B., Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 2002, 41, 6539-6547.
55. (A) Buevich, A. V.; Silva, T.; Brodsky, B.; Baum, J., Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders. J. Biol. Chem. 2004, 279, 46890-46895; (B) Hyde, T. J.; Bryan, M. A.; Brodsky, B.; Baum, J., Sequence dependence of renucleation after a Gly mutation in model collagen peptides. J. Biol. Chem. 2006, 281, 36937-36943.
56. Frank, S.; Boudko, S.; Mizuno, K.; Schulthess, T.; Engel, J.; Bachinger, H. P., Collagen triple helix formation can be nucleated at either end. J. Biol. Chem. 2003, 278, 7747-7750.
57. O'Leary, L. E.; Fallas, J. A.; Hartgerink, J. D., Positive and negative design leads to compositional control in AAB collagen heterotrimers. J. Am. Chem. Soc. 2011, 133, 5432-5443.
58. Chen, C. C.; Hsu, W.; Kao, T. C.; Horng, J. C., Self-assembly of short collagen-related peptides into fibrils via cation-π interactions. Biochemistry 2011, 50, 2381-2383.
59. Zheng, T.-Y.; Lin, Y.-J.; Horng, J.-C., Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein. Biochemistry 2010, 49, 4255-4263.
60. Chang, S. R.; Yang, C. H. Study on the Formation of Intramolecular Disulfide Bond in Octreotide. Chung Yuan Christian University, 2003.
61. Chan, W. C.; White, P. D., Fmoc solid-phase peptide synthesis: A practical approach. Oxford University press: New York, USA, 2000; Vol. 222.
62. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protocols 2006, 1, 2876-2890.
63. Engel, J.; Chen, H.-T.; Prockop, D. J.; Klump, H., The triple helix ⇌ coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers 1977, 16, 601-622.
64. Fallas, J. A.; Gauba, V.; Hartgerink, J. D., Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J. Biol. Chem. 2009, 284, 26851-26859.
65. Shoulders, M. D.; Kotch, F. W.; Choudhary, A.; Guzei, I. A.; Raines, R. T., The aberrance of the 4S diastereomer of 4-hydroxyproline. J. Am. Chem. Soc. 2010, 132, 10857-10865.
66. Yang, W.; Chan, V. C.; Kirkpatrick, A.; Ramshaw, J. A.; Brodsky, B., Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J. Biol. Chem. 1997, 272, 28837-28840.
67. (A) Borders, C. L.; Broadwater, J. A.; Bekeny, P. A.; Salmon, J. E.; Lee, A. S.; Eldridge, A. M.; Pett, V. B., A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 1994, 3, 541-548; (B) Radmer, R. J.; Klein, T. E., Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site. Biochemistry 2004, 43, 5314-5323.
68. (A) Nishi, Y.; Doi, m.; Uchiyama, S.; Nishiuchi, Y.; Nakazawa, T.; Ohkubo, T.; Kobayashi, Y., Stabilization mechanism of triple helical structure of collagen molecules. Lett. Pept. Sci. 2003, 10, 533-537; (B) Shoulders, M. D.; Satyshur, K. A.; Forest, K. T.; Raines, R. T., Stereoelectronic and steric effects in side chains preorganize a protein main chain. Proc. Natl. Acad. Sci. USA 2010, 107, 559-564.
69. Chiang, C. H.; Horng, J. C., Cation-π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211.
70. Xiao, J.; Sun, X.; Madhan, B.; Brodsky, B.; Baum, J., NMR studies demonstrate a unique AAB composition and chain register for a heterotrimeric type IV collagen model peptide containing a natural interruption site. J. Biol. Chem. 2015, 290, 24201-24209.
71. Xu, F.; Zhang, L.; Koder, R. L.; Nanda, V., De novo self-assembling collagen heterotrimers using explicit positive and negative design. Biochemistry 2010, 49, 2307-2316.
72. Fallas, J. A.; Lee, M. A.; Jalan, A. A.; Hartgerink, J. D., Rational design of single-composition ABC collagen heterotrimers. J. Am. Chem. Soc. 2012, 134, 1430-1433.
73. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. USA 2018, 115, 6207-6212.
74. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the C-terminal cation−π interactions. Biomacromolecules 2017, 18, 985-993.
75. (A) Clements, K. A.; Acevedo-Jake, A. M.; Walker, D. R.; Hartgerink, J. D., Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules 2017, 18, 617-624; (B) Acevedo-Jake, A. M.; Clements, K. A.; Hartgerink, J. D., Synthetic, register-specific, AAB heterotrimers to investigate single point glycine mutations in osteogenesis imperfecta. Biomacromolecules 2016, 17, 914-921.
76. Jalan, A. A.; Jochim, K. A.; Hartgerink, J. D., Rational design of a non-canonical "sticky-ended" collagen triple helix. J. Am. Chem. Soc. 2014, 136, 7535-7538.