簡易檢索 / 詳目顯示

研究生: 王鵬竣
Wang, Peng-Chun
論文名稱: 利用同步輻射光源研究氧化鐠奈米粒子經熱退火及紫外光照光後的結構變化對催化活性之影響
Studies of Structural Changes and Catalytic Activity Variation due to Thermal Annealing and UV Irradiation in Praseodymium Oxide Nanoparticles Using Synchrotron Radiation X-ray Techniques
指導教授: 蘇雲良
Soo, Yun-Liang
口試委員: 湯茂竹
Tang, Mau-Tsu
吳泰興
Wu, Tai-Sing
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 44
中文關鍵詞: 三氧化二鐠十一氧化六鐠奈米粒子價態變化紫外光還原催化活性
外文關鍵詞: Variation change
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討氧化鐠內鐠原子價態改變對催化活性的影響,透過多元醇
    法合成氧化鐠奈米粒子。透過氧氣退火氧化以及紫外光照光還原機制,使得氧
    化鐠奈米粒子內鐠原子價態比例產生變化,以此探討鐠原子價態變化對催化活
    性之關聯性。
    在研究過程中,利用熱重分析(Thermogravimetric Analyze)及X光繞射(X-ray
    Diffraction)來確認氧化鐠奈米粒子的晶體結構,也利用電子顯微鏡(HR-TEM)確
    認奈米粒子形貌及大小;並透過鐠原子吸收邊L3-edge的X光近邊吸收精細結構
    (X-ray Absorption Near Edge Structure)及延伸 X 光吸收精細結構(Extended X-ray
    Absorption Fine Struction)量測與分析,進而得知氧化鐠晶體中鐠原子的位置以
    及價態,從而得知樣品的詳細資訊。並且藉由過氧化氫與六甲基聯苯胺反應之
    顏色變化,利用可見光光譜儀(UV-Vis)進行量測個別樣品之吸收率,用以鑑定
    不同實驗參數樣品的催化力。
    本論文歸納出,經鍛燒過後的氧化鐠相比與鍛燒前相比具有較高的催化活
    性,而經過紫外光照光後又能得到更好的催化活性,其中以經過紫外光照射 3
    小時的樣品具有最高的催化活性。


    In this thesis, we investigated the impact of changes in the valence state of
    praseodymium in praseodymium oxide on its catalytic activity. Praseodymium
    oxide nanoparticles were synthesized using polyol method. The valence state ratio
    of the praseodymium oxide nanoparticles was altered through oxygen annealing
    oxidation and ultraviolet (UV) light reduction mechanisms to explore the
    relationship between changes in the praseodymium valence state and catalytic
    activity.
    During the research process, thermogravimetric analysis (TGA) and X-ray
    diffraction (XRD) were used to confirm the crystal structure of the praseodymium
    oxide nanoparticles. Additionally, measurements and analyses were performed
    using X-ray absorption near-edge structure (XANES) and extended X-ray
    absorption fine structure (EXAFS) at the praseodymium L3-edge to determine the
    position and valence state of praseodymium atoms in the praseodymium oxide
    crystals, providing detailed information about the samples.
    As a result, this study concludes that praseodymium oxide, after calcination,
    exhibits higher catalytic activity compared to uncalcined samples. Furthermore,
    samples exposed to UV light show even better catalytic activity, with the sample
    irradiated for 3 hours demonstrating the highest catalytic activity.

    章節目錄 摘 要 .................................................................................................................... 2 Abstract ............................................................................................................... 3 第一章 緒論 ................................................................................................... 7 1-1 研究動機 ................................................................................................. 7 1-2 論文簡介 ................................................................................................. 7 第二章 理論與文獻回顧 ....................................................................................... 9 2-1 氧化鐠材料介紹 ..................................................................................... 9 2-2 文獻回顧................................................................................................ 9 第三章 實驗方法與原理 ...................................................................................... 12 3-1熱重分析儀(Thermogravimetric Analyzer;TGA) .................................... 12 3-2 X光繞射(X-ray Diffraction;XRD) ........................................................ 13 3-3 X光吸收精細結構(XAFS) ...................................................................... 15 3-4 紫外光至可見光光譜儀(UV-Vis) ......................................................... 18 3-5 高解析穿透式電子顯微鏡(HR-TEM) ...................................................... 20 第四章 實驗設備與樣品製作 .............................................................................. 22 4-1 樣品合成 .............................................................................................. 22 4-2 實驗試藥 .............................................................................................. 23 4-3 製備流程 .............................................................................................. 23 4-4 氣氛退火 .............................................................................................. 24 4-5 紫外光照光 .......................................................................................... 25 4-6 催化活性實驗 ...................................................................................... 26 4-6-1 實驗試藥 .......................................................................................... 26 6 第五章 實驗結果數據與分析 .............................................................................. 28 5-1 熱重分析儀(TGA) .................................................................................. 28 5-2 X光繞射分析儀(XRD)分析 .................................................................... 29 5-3高解析穿透式電子顯微鏡(HR-TEM)分析 ............................................... 31 5-4 X光吸收精細結構(XAFS)分析 ................................................................ 33 5-4-1 X光近邊吸收精細結構(XANES)分析 ................................................... 33 5-5 紫外光至可見光光譜儀(UV-Vis)分析 ..................................................... 39 第六章 結論 ........................................................................................................ 42 附錄 參考文獻 .................................................................................................... 43

    [1] Ferro, S. (2011). Physicochemical and electrical properties of praseodymium oxides. International
    Journal of Electrochemistry, 2011, 1–7.
    [2] Treu, B.L., Fahrenholtz, W.G. & O’Keefe, M.J. Thermal decomposition behavior of praseodymium
    oxides, hydroxides, and carbonates. Inorg Mater 47, 974–978 (2011).
    [3] Junyi GU, Wugang FAN, Zhaoquan ZHANG, Qin YAO, Hongquan ZHAN. Structure and Optical
    Property of Pr2O3 Powder Prepared by Reduction [J]. Journal of Inorganic Materials, 2023, 38(7):
    771
    [4] Lv, P., Zhang, L., Koppala, S., Chen, K., He, Y., Li, S., & Yin, S. (2020). Decomposition study of
    praseodymium oxalate as a precursor for praseodymium oxide in the microwave field. ACS Omega,
    5(34), 21338–21344.
    [5] Branko Matović, Jelena Pantić, Marija Prekajski, Nadežda Stanković, Dušan Bučevac, Tamara
    Minović, Maria Čebela,Synthesis and characterization of Pr6O11 nanopowders,Ceramics
    International,Volume 39, Issue 3,2013,Pages 3151-3155,
    [6] Jieru Zhang, Tai-Sing Wu, Ho Viet Thang, Kai-Yu Tseng, Xiaodong Hao, Bingshe Xu, Hsin-Yi
    Tiffany Chen, Yung-Kang Peng ”Cluster Nanozymes with Optimized Reactivity and Utilization of
    Active Sites for Effective Peroxidase (and Oxidase) Mimicking” small, Volume18, Issue5 February
    3, 2022, 2104844
    [7] Fujishiro, H., Naito, T., Takeda, D., Yoshida, N., Watanabe, T., Nitta, K., Hejtmánek, J., Knížek, K.,
    & Jirák, Z. (2013). Simultaneous valence shift of Pr and Tb ions at the spin-state transition in
    (Pr₁₋ᵧTbᵧ)₀.₇Ca₀.₃CoO₃. Physical Review B, 87(15), 155153.
    [8] Zinatloo-Ajabshir, S., & Salavati‐Niasari, M. (2015). Novel poly(ethyleneglycol)-assisted synthesis
    of praseodymium oxide nanostructures via a facile precipitation route. Ceramics International, 41,
    567-575.
    [9] Wu, TS., Syu, LY., Lin, CN. et al. Enhancement of catalytic activity by UV-light irradiation in
    CeO2 nanocrystals. Sci Rep 9, 8018 (2019).
    [10] Tai-Sing Wu, Leng-You Syu, Shih-Chang Weng, Horng-Tay Jeng, Shih-Lin Chang, Yun-Liang
    43
    Soo ”Defect engineering by synchrotron radiation X-rays in CeO2 nanocrystals” Journal of
    Synchrotron Radiation, Volume 25, Issue 5 p. 1395-1399

    QR CODE