簡易檢索 / 詳目顯示

研究生: 劉宗麟
Liu, Tsung-lin
論文名稱: 重組式甲醇燃料電池水熱管理之研究
Fundamental studies on thermal and fluid management in reformed methanol fuel cell (RMFC)
指導教授: 潘欽
Pan, Chin
口試委員: 張錦裕
謝曉星
林清發
白寶實
潘欽
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 132
中文關鍵詞: 氣體擴散層水管理甲醇重組式燃料電池微型熱交換器微流道沸騰熱傳
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醇重組式燃料電池為一整合系統,主要元件包括了甲醇重組器及質子交換
    膜燃料電池。其中甲醇重組器為燃料轉換器,目的是將液態甲醇經重組反應後轉
    為氫氣提供給質子交換膜燃料電池使用。而質子交換膜燃料電池為發電元件,可
    將氫氣燃料轉為電能。質子交換膜燃料電池在電化學發電的過程中,會在陰極產
    生水,過多的水可能阻塞氣體擴散層或觸媒層及流道導致電池效率下降。因此,
    了解水在擴散層中的傳輸機制,進而使用高效率或自然的方式進行水管理是一重
    要的課題。另一方面,甲醇重組器的重組反應其反應物為氣態甲醇,且操作溫度
    需要接近250 °C 的高溫以提高轉換效率,但質子交換膜超過120 °C 就可能會導
    致薄膜受損,因此重組反應產生的氫氣需要降溫後才能給予質子交換膜燃料電池
    使用。然而,若增加甲醇蒸發器及散熱器是必會增加系統的複雜性及降低整體系
    統效率。因此,有效的熱管理及簡單的系統整合有其必要性。本研究由上述的兩個熱流工程問題出發,首先設計一套水在氣體擴散層輸送實驗環路系統,使用影像觀察水穿透擴散層形成液珠的過程,並同步量測背壓分析,以模擬探討質子交換膜燃料電池陰極水傳輸機制。本研究採用四種不同型式的商用氣體擴散層,包括碳布、碳紙、碳布結合單面微孔層及碳布結合雙面微孔層。研究結果顯示,碳布結合單面微孔層可觀察到間歇”噴射流”水移除機制,並可維持背壓於一定值,表示可快速移除過多的水並維持氣體擴散層一定的水含量。另外,本研究所提出的背壓模式可量化不同碳材的水排除速率及其含水飽和度,更深入了解冷凝水在不同氣體擴散層的傳輸機制。另一方面,為了有效降低甲醇重組器的產出氫氣的溫度並預熱甲醇至氣態,本研究提出使用微型熱交換器整合甲醇重組器的概念,利用甲醇重組反應產生高溫產物的廢熱來蒸發液態甲醇。為了解微型熱交換器其熱流特性,本研究設計第
    二套實驗系統,使用高溫氦氣模擬氫氣來加熱液態甲醇於自製的矽質微流道熱交
    換器。此研究探討不同型式(同向和逆向)的熱交換器在單相、雙相區的熱傳特性
    及差異,包括沸騰雙相流譜、單相對流及沸騰雙相熱傳遞係數、入出口溫度震盪
    分析和熱效率分析。研究結果顯示,在接近乾化區時,逆向式微熱交換器在出口
    處可看到液膜已完全蒸發,然而同向式的出口仍可看到液膜存在,且此時逆向式
    的熱端流體出口溫度較同向式熱交換器低。於熱效率的分析中,逆向式和同向式
    的最高效率分別可達0.9 和0.85。顯示逆向式較同向式微熱交換器適合整合於甲
    醇重組燃料電池系統。另外,本研究所探討的甲醇雙相熱傳遞係數於微型熱交換
    器中,其趨勢會隨著甲醇平均乾度增加而增加,直到接近乾化區後會開始下降。
    而逆向式微熱交換器較同向式微熱交換器具有較高的臨界熱通率值,應是由於流向的不同使逆向式微熱交換器有較高的入口次冷度所導致。最後,本研究根據實
    驗數據所求得的單相熱對流與沸騰雙相熱傳遞係數與文獻做比對,並進一步發展
    了同向及逆向微熱交換器雙相沸騰熱傳遞係數的經驗公式,其誤差分別為10.1
    和5.82%。


    A reformed methanol fuel cell (RMFC) is an integrated system, which includes two main components, a methanol reformer and a proton exchange membrane fuel cell (PEMFC). The methanol reformer is served as a fuel convertor that changes the fuel from liquid methanol to hydrogen, and then feeds the hydrogen into the PEMFC. A PEMFC is an electricity generation system, which converts the chemical energy of the hydrogen fuel into electricity via electrochemical process. However, this process will generate amount of water in the cathode of PEMFC. If too much water accumulated inside the PEMFC cathode, the performance of a PEMFC may be deteriorated oxygen transport may be limited due to water blocking the pores in the catalyst layer (CL), gas diffusion layer (GDL), and flow fields. This phenomenon, known as “water flooding,” is a critical obstacle to get higher efficiency and power density for a PEMFC. Thus, in order to alleviate such a mass transport limitation on
    fuel cell efficiency, it is important to understand the water transport in the cathode GDL. On the other hand, the reformed reaction of the methanol reformer needs methanol vapor as the fuel, and the reforming temperature requires a high temperature as high as 250 °C. However, the proton exchange membrane of PEMFC may be damaged if the fuel temperature is higher than 120 °C. Thus, the temperature of the hydrogen produced must be reduced before it enters a PEMFC. Adding a methanol evaporator and a heat sink may solve the issue. However, it may significantly increase
    the complexity of the RMFC system and may jeopardize the overall efficiency. In order to explore the above-mentioned two engineering issues, the present
    study design an experimental rig synchronizing the flow visualization of growth of liquid droplets on the surface of GDL and the measurement back pressure to
    investigate the transport phenomena of liquid water through GDLs with different morphologies. Four commercial GDL media, including carbon paper, carbon cloth, carbon cloth with micro-porous layers (MPL) are employed. The experimental results demonstrate the “self-eruption transport” mechanism in the carbon cloth with single-sided MPL only. Such self-eruption mechanism may help controlling the water contained inside the GDL regardless of the water generation rate. This suggests that a
    GDL with single-sided MPL treatment may help effectively the water management in a PEMFC. Moreover, through synchronizing flow visualization of the growth of the water droplet that emerges out of the GDL and the measurements of the dynamic back pressure, the flow rate of water drainage and water saturation inside the GDLs are analyzed. The methodology proposed in this study enables a deep understanding and
    knowledge for the water transport mechanism in the GDLs. A concept of using a microchannel heat exchanger (MCHE) to integrate with the micro methanol reformer is proposed in the present study. The MCHE utilizes the exhaust heat of the products from the micro methanol reformer to vaporize the liquid methanol. In order to deeply understand the thermal and fluid characteristics of a MCHE, the second set of experiments is designed to use high temperature helium gas
    to heat the liquid methanol with a home-made, silicon-based MCHE. The effects of the flow arrangement (co- and counter-flow) on the heat transfer characteristics in
    single- and two-phase flow regions are studied. Two-phase flow patterns, single-phase and boiling two-phase heat transfer coefficient, inlet/outlet temperature oscillation,
    and the thermal efficiency of MCHEs are also investigated. The experimental results show that for nearly dryout zone with the approximately same helium heat flux, the
    counter-flow type demonstrates fully dryout of the liquid film in the cold-side outlet but for the co-flow type, the liquid film is still present in the outlet plenum. At the
    same time, the hot-side fluid (helium) outlet temperature of counter-flow MCHE is lower than that for the co-flow one. It indicates that the counter-flow MCHE not only
    provides a methanol vapor with higher quality but also effectively reduces the hot-side fluid outlet temperature. In terms of thermal efficiency, the highest efficiency
    of co-current design is about 0.85 and is 0.9 for counter-flow design. It indicates the counter-flow type is a better candidate to be integrated in RMFC system.
    The heat transfer characteristics of the boiling heat transfer in the MCHEs with gas heating condition is also of significant interest for academic research as well as
    engineering applications. The boiling two-phase heat transfer coefficient is also carried out in the present study. The experimental data of the present study shows that heat transfer coefficient increases with an increase in the mean vapor quality until they reach a maximum, after which dryout takes place and the heat transfer coefficient
    decreases. The counter-flow MCHE exhibits a higher critical heat flux (CHF) than that of the co-flow MCHE. It suggests that the counter-flow MCHE results in a higher
    methanol inlet subcooling and therefore a higher CHF. The heat transfer coefficient data of single-phase and boiling two-phase region are compared with correlations
    from literature and empirical correlations for the co- and counter-flow MCHEs are also developed. The mean absolute errors of the present correlations are 10.1 % and
    5.82% for the co- and counter-flow MCHE, respectively.

    Table of contents 摘要 I Abstract III Acknowledge VI Table of contents VII List of Tables XI List of Figures XII Nomenclature XVII Chapter 1 Introduction - 1 - 1.1 Background and Motivation of this study - 1 - 1.2 Literature review - 6 - 1.2.1 Water management of the GDL - 6 - 1.2.1.1 Computational model - 6 - 1.2.1.2 Diagnostic technique analysis - 7 - 1.2.1.3 GDL morphology - 8 - 1.2.2 Thermal and fluid study of heat exchangers - 9 - 1.2.2.1 Applications and development of MCHEs - 9 - 1.2.2.2 Single-phase flow in MCHE - 10 - 1.2.2.3 Boiling two-phase flow in MCHE - 12 - 1.2.2.4 Two-phase flow instability - 14 - 1.3 Objectives and research methodology - 15 - 1.4 Scope of the thesis - 16 - Chapter 2 Experimental Details - 18 - 2.1 Water transport through GDLs - 18 - 2.1.1 Experimental setups - 18 - 2.1.2 Gas diffusion layers - 20 - 2.1.3 Experimental procedure - 22 - 2.1.4 Water flow rate for the syringe pump - 23 - 2.2 Microchannel heat exchanger - 24 - 2.2.1 Experimental setups - 24 - 2.2.2 Test section and adiabatic module - 25 - 2.2.3 Fabrication of test section - 27 - 2.3 Measurement uncertainty and uncertainty analysis - 30 - Chapter 3 Visualization and back pressure analysis of water transport through GDL of PEMFC - 35 - 3.1 Liquid water breakthrough in GDL samples without MPL - 35 - 3.2 Liquid water breakthrough for the GDL samples with MPL - 40 - 3.3 Differential pressure characteristics of different GDL samples - 44 - 3.4 Liquid discharge rate - 46 - 3.5 Liquid water saturation inside the GDL samples - 51 - 3.6 Summary - 54 - Chapter 4 Temperature distribution, boiling two-phase flow patterns, and thermal efficiency of co- and counter-flow MCHEs. - 56 - 4.1 Flow regimes of MCHEs - 56 - 4.2 Numerical calculations for temperature distribution of MCHE in single-phase region - 60 - 4.3 Two-phase flow pattern - 72 - 4.4 Temperature oscillation characteristics - 80 - 4.5 Thermal efficiency - 83 - 4.5.1 Calculation process of thermal efficiency - 83 - 4.5.2 Thermal efficiency analysis - 85 - 4.6 Summary - 91 - Chapter 5 Single-phase and boiling two-phase heat transfer of co- and counter-flow MCHEs - 93 - 5.1 Data reduction - 93 - 5.1.1 Heat-transfer rate from hot to cold side - 93 - 5.1.2 Single-phase flow, heat transfer coefficient - 95 - 5.1.3 Boiling heat transfer coefficient - 96 - 5.1.4 Nusselt number - 98 - 5.1.5 Mean vapor quality - 99 - 5.2 Single-phase convection - 100 - 5.3 Boiling curve - 101 - 5.4 Cold-side heat transfer coefficient - 103 - 5.5 Correlations development - 106 - 5.6 Summary - 112 - Chapter 6 Conclusions and Recommendations for Future Work - 114 - 6.1 Conclusions - 114 - 6.1.1 Water transport through GDLs of PEMFC - 115 - 6.1.2 Thermal and fluid management of MCHE - 115 - 6.2 Recommendations for future work - 117 - References - 119 - Publications - 131 -

    [1] Pieter Tans, R. Keeling, Trends in atmospheric carbon dioxide, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
    [2] R.-Y. Chein, Y.-C. Chen, Y.-S. Lin, J.N. Chung, Experimental study on the hydrogen production of integrated methanol-steam reforming reactors for PEM fuel cells, International Journal of Thermal Sciences, 50(7) (2011) 1253-1262.
    [3] P. Hyung Gyu, J.A. Malen, W.T. Piggott, J.D. Morse, R. Greif, C.P. Grigoropoulos, M.A. Havstad, R. Upadhye, Methanol steam reformer on a silicon wafer, Microelectromechanical Systems, Journal of, 15(4) (2006) 976-985.
    [4] Y. Kazushi, et al., A micro fuel reformer integrated with a combustor and a microchannel evaporator, Journal of Micromechanics and Microengineering, 16(9) (2006) S191.
    [5] D.-E. Park, T. Kim, S. Kwon, C.-K. Kim, E. Yoon, Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells, Sensors and Actuators A: Physical, 135(1) (2007) 58-66.
    [6] G.-G. Park, D.J. Seo, S.-H. Park, Y.-G. Yoon, C.-S. Kim, W.-L. Yoon, Development of microchannel methanol steam reformer, Chemical Engineering Journal, 101(1-3) (2004) 87-92.
    [7] G.-G. Park, S.-D. Yim, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, D.-J. Seo, K. Eguchi, Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems, Journal of Power Sources, 145(2) (2005) 702-706.
    [8] U. Pasaogullari, C.Y. Wang, Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, 151(3) (2004) A399-A406.
    [9] U. Pasaogullari, C.-Y. Wang, Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells, Electrochimica Acta, 49(25) (2004) 4359-4369.
    [10] P.K. Sinha, C.-Y. Wang, Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell, Electrochimica Acta, 52(28) (2007) 7936-7945.
    [11] V.P. Schulz, J. Becker, A. Wiegmann, P.P. Mukherjee, C.-Y. Wang, Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach, Journal of The Electrochemical Society, 154(4) (2007) B419-B426.
    [12] X. Wang, T. Van Nguyen, Modeling the Effects of Capillary Property of Porous Media on the Performance of the Cathode of a PEMFC, Journal of The Electrochemical Society, 155(11) (2008) B1085-B1092.
    [13] R. Satija, D.L. Jacobson, M. Arif, S.A. Werner, In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, Journal of Power Sources, 129(2) (2004) 238-245.
    [14] N. Pekula, K. Heller, P.A. Chuang, A. Turhan, M.M. Mench, J.S. Brenizer, K. Ünlü, Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1-3) (2005) 134-141.
    [15] S. Kim, M.M. Mench, Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow, Journal of The Electrochemical Society, 156(3) (2009) B353-B362.
    [16] A. Turhan, K. Heller, J.S. Brenizer, M.M. Mench, Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging, Journal of Power Sources, 160(2) (2006) 1195-1203.
    [17] I. Manke, C. Hartnig, M. Grunerbel, W. Lehnert, N. Kardjilov, A. Haibel, A. Hilger, J. Banhart, H. Riesemeier, Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography, Applied Physics Letters, 90(17) (2007) 174105-174105-174103.
    [18] C. Hartnig, I. Manke, R. Kuhn, N. Kardjilov, J. Banhart, W. Lehnert, Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells, in: Applied Physics Letters, AIP, 2008, pp. 134106-134103.
    [19] C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. Goebbels, J. Banhart, High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells, Journal of Power Sources, 188(2) (2009) 468-474.
    [20] K. Tüber, D. Pócza, C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell, Journal of Power Sources, 124(2) (2003) 403-414.
    [21] A. Hakenjos, H. Muenter, U. Wittstadt, C. Hebling, A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding, Journal of Power Sources, 131(1-2) (2004) 213-216.
    [22] X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang, Visualization of Liquid Water Transport in a PEFC, Electrochemical and Solid-State Letters, 7(11) (2004) A408-A411.
    [23] F.Y. Zhang, X.G. Yang, C.Y. Wang, Liquid Water Removal from a Polymer Electrolyte Fuel Cell, Journal of The Electrochemical Society, 153(2) (2006) A225-A232.
    [24] T. Ous, C. Arcoumanis, Visualisation of water droplets during the operation of PEM fuel cells, Journal of Power Sources, 173(1) (2007) 137-148.
    [25] D. Spernjak, A.K. Prasad, S.G. Advani, Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell, Journal of Power Sources, 170(2) (2007) 334-344.
    [26] I.S. Hussaini, C.-Y. Wang, Visualization and quantification of cathode channel flooding in PEM fuel cells, Journal of Power Sources, 187(2) (2009) 444-451.
    [27] A. Bazylak, Liquid water visualization in PEM fuel cells: A review, International Journal of Hydrogen Energy, 34(9) (2009) 3845-3857.
    [28] J.R. M. F. Mathias, J. Fleming, and W. Lehnert, Handbook of Fuel Cells:Fundamentals Technology and Applications, John Wiley & Sons, Ltd, New York, 2003.
    [29] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, International Journal of Heat and Mass Transfer, 46(24) (2003) 4595-4611.
    [30] S. Litster, D. Sinton, N. Djilali, Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers, Journal of Power Sources, 154(1) (2006) 95-105.
    [31] A. Bazylak, D. Sinton, N. Djilali, Dynamic water transport and droplet emergence in PEMFC gas diffusion layers, Journal of Power Sources, 176(1) (2008) 240-246.
    [32] A. Bazylak, J. Heinrich, N. Djilali, D. Sinton, Liquid water transport between graphite paper and a solid surface, Journal of Power Sources, 185(2) (2008) 1147-1153.
    [33] B. Gao, T.S. Steenhuis, Y. Zevi, J.Y. Parlange, R.N. Carter, T.A. Trabold, Visualization of unstable water flow in a fuel cell gas diffusion layer, Journal of Power Sources, 190(2) (2009) 493-498.
    [34] E.F. Medici, J.S. Allen, Existence of the phase drainage diagram in proton exchange membrane fuel cell fibrous diffusion media, Journal of Power Sources, 191(2) (2009) 417-427.
    [35] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, Water flow in the gas diffusion layer of PEM fuel cells, Journal of Membrane Science, 261(1-2) (2005) 98-106.
    [36] E. Kimball, T. Whitaker, Y.G. Kevrekidis, J.B. Benziger, Drops, slugs, and flooding in polymer electrolyte membrane fuel cells, AIChE Journal, 54(5) (2008) 1313-1332.
    [37] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, On the role of the microporous layer in PEMFC operation, Electrochemistry Communications, 11(3) (2009) 576-579.
    [38] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Wettability and capillary behavior of fibrous gas diffusion media for polymer electrolyte membrane fuel cells, Journal of Power Sources, 194(1) (2009) 433-444.
    [39] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Direct measurement of the capillary pressure characteristics of water-air-gas diffusion layer systems for PEM fuel cells, Electrochemistry Communications, 10(10) (2008) 1520-1523.
    [40] J.D. Fairweather, P. Cheung, D.T. Schwartz, The effects of wetproofing on the capillary properties of proton exchange membrane fuel cell gas diffusion layers, Journal of Power Sources, 195(3) (2010) 787-793.
    [41] J.D. Fairweather, P. Cheung, J. St-Pierre, D.T. Schwartz, A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers, Electrochemistry Communications, 9(9) (2007) 2340-2345.
    [42] Y.-I. Chou, Z.-Y. Siao, Y.-F. Chen, L.-Y. Sung, W.-M. Yang, C.-C. Wang, Water permeation analysis on gas diffusion layers of proton exchange membrane fuel cells for Teflon-coating annotation, Journal of Power Sources, 195(2) (2010) 536-540.
    [43] Z. Lu, M.M. Daino, C. Rath, S.G. Kandlikar, Water management studies in PEM fuel cells, part III: Dynamic breakthrough and intermittent drainage characteristics from GDLs with and without MPLs, International Journal of Hydrogen Energy, 35(9) (2010) 4222-4233.
    [44] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, Electron Device Letters, IEEE, 2(5) (1981) 126-129.
    [45] M.G. Khan, A. Fartaj, A review on microchannel heat exchangers and potential applications, International Journal of Energy Research, 35(7) (2011) 553-582.
    [46] E.R. Delsman, M.H.J.M. De Croon, A. Pierik, G.J. Kramer, P.D. Cobden, C. Hofmann, V. Cominos, J.C. Schouten, Design and operation of a preferential oxidation microdevice for a portable fuel processor, Chemical Engineering Science, 59(22-23) (2004) 4795-4802.
    [47] T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, T. Yamamoto, Development of multi-layered microreactor with methanol reformer for small PEMFC, Journal of Power Sources, 145(2) (2005) 691-696.
    [48] J.S. Hu, C.Y.H. Chao, An experimental study of the fluid flow and heat transfer characteristics in micro-condensers with slug-bubbly flow, International Journal of Refrigeration, 30(8) (2007) 1309-1318.
    [49] E. Anurjew, E. Hansjosten, S. Maikowske, U. Schygulla, J.J. Brandner, Microstructure devices for water evaporation, Applied Thermal Engineering, 31(5) (2011) 602-609.
    [50] W. Wibel, U. Schygulla, J.J. Brandner, Micro device for liquid cooling by evaporation of R134a, Chemical Engineering Journal, 167(2-3) (2011) 705-712.
    [51] C.Y. Kuo, C. Pan, Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections, Journal of Micromechanics and Microengineering, 20(9) (2010) 095001.
    [52] C.Y. Park, P. Hrnjak, Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system, International Journal of Refrigeration, 31(5) (2008) 822-831.
    [53] R. Yun, Y. Kim, C. Park, Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems, Applied Thermal Engineering, 27(8-9) (2007) 1320-1326.
    [54] J.J. Brandner, L. Bohn, T. Henning, U. Schygulla, K. Schubert, Microstructure Heat Exchanger Applications in Laboratory and Industry, Heat Transfer Engineering, 28(8) (2007) 761 - 771.
    [55] V. Ponyavin, Y. Chen, A. Hechanova, M. Wilson, Numerical modeling of compact high temperature heat exchanger and chemical decomposer for hydrogen production, Heat and Mass Transfer, 44(11) (2008) 1379-1389.
    [56] V. Ponyavin, Y. Chen, T. Mohamed, M. Trabia, A.E. Hechanova, M. Wilson, Parametric study of sulfuric acid decomposer for hydrogen production, Progress in Nuclear Energy, 50(2-6) 427-433.
    [57] T. Dang, J.-T. Teng, Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers, Heat and Mass Transfer, 47(10) (2011) 1311-1322.
    [58] T. Dang, J.-t. Teng, J.-c. Chu, A study on the simulation and experiment of a microchannel counter-flow heat exchanger, Applied Thermal Engineering, 30(14-15) (2010) 2163-2172.
    [59] K. Schubert, J. Brandner, M. Fichtner, G. Linder, U. Schygulla, A. Wenka, MICROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING, Microscale Thermophysical Engineering, 5(1) (2001) 17-39.
    [60] J.J. Brandner, E. Anurjew, L. Bohn, E. Hansjosten, T. Henning, U. Schygulla, A. Wenka, K. Schubert, Concepts and realization of microstructure heat exchangers for enhanced heat transfer, Experimental Thermal and Fluid Science, 30(8) (2006) 801-809.
    [61] M.I. Hasan, A.A. Rageb, M. Yaghoubi, H. Homayoni, Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, International Journal of Thermal Sciences, 48(8) (2009) 1607-1618.
    [62] P.-X. Jiang, M.-H. Fan, G.-S. Si, Z.-P. Ren, Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers, International Journal of Heat and Mass Transfer, 44(5) (2001) 1039-1051.
    [63] S.-W. Kang, S.-C. Tseng, Analysis of effectiveness and pressure drop in micro cross-flow heat exchanger, Applied Thermal Engineering, 27(5-6) (2007) 877-885.
    [64] N. García-Hernando, A. Acosta-Iborra, U. Ruiz-Rivas, M. Izquierdo, Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger, International Journal of Heat and Mass Transfer, 52(23-24) (2009) 5433-5446.
    [65] T. Dang, J.-T. Teng, The effects of configurations on the performance of microchannel counter-flow heat exchangers–An experimental study, Applied Thermal Engineering, 31(17–18) (2011) 3946-3955.
    [66] H. Cao, G. Chen, Q. Yuan, Testing and Design of a Microchannel Heat Exchanger with Multiple Plates, Industrial & Engineering Chemistry Research, 48(9) (2009) 4535-4541.
    [67] H. Cao, G. Chen, Q. Yuan, Thermal Performance of Crossflow Microchannel Heat Exchangers, Industrial & Engineering Chemistry Research, 49(13) (2010) 6215-6220.
    [68] Y.Y. Hsieh, T.F. Lin, Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger, International Journal of Heat and Mass Transfer, 45(5) (2002) 1033-1044.
    [69] G.A. Longo, A. Gasparella, Heat transfer and pressure drop during HFC refrigerant vaporisation inside a brazed plate heat exchanger, International Journal of Heat and Mass Transfer, 50(25-26) (2007) 5194-5203.
    [70] R. Furberg, B. Palm, S. Li, M. Toprak, M. Muhammed, The Use of a Nano- and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger, Journal of Heat Transfer, 131(10) (2009) 101010-101018.
    [71] P. Fernando, B. Palm, T. Ameel, P. Lundqvist, E. Granryd, A minichannel aluminium tube heat exchanger – Part I: Evaluation of single-phase heat transfer coefficients by the Wilson plot method, International Journal of Refrigeration, 31(4) (2008) 669-680.
    [72] P. Fernando, B. Palm, T. Ameel, P. Lundqvist, E. Granryd, A minichannel aluminium tube heat exchanger – Part II: Evaporator performance with propane, International Journal of Refrigeration, 31(4) (2008) 681-695.
    [73] P. Fernando, B. Palm, T. Ameel, P. Lundqvist, E. Granryd, A minichannel aluminium tube heat exchanger – Part III: Condenser performance with propane, International Journal of Refrigeration, 31(4) (2008) 696-708.
    [74] S. Kakac, B. Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(3-4) (2008) 399-433.
    [75] W. Qu, I. Mudawar, Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, International Journal of Heat and Mass Transfer, 46(15) (2003) 2737-2753.
    [76] K.H. 6Chang, C. Pan, Two-phase flow instability for boiling in a microchannel heat sink, International Journal of Heat and Mass Transfer, 50(11-12) (2007) 2078-2088.
    [77] G. Wang, P. Cheng, H. Wu, Unstable and stable flow boiling in parallel microchannels and in a single microchannel, International Journal of Heat and Mass Transfer, 50(21-22) (2007) 4297-4310.
    [78] D. Bogojevic, K. Sefiane, A.J. Walton, H. Lin, G. Cummins, Two-phase flow instabilities in a silicon microchannels heat sink, International Journal of Heat and Fluid Flow, 30(5) (2009) 854-867.
    [79] D. Bogojevic, K. Sefiane, A.J. Walton, H. Lin, G. Cummins, D.B.R. Kenning, T.G. Karayiannis, Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink, International Journal of Thermal Sciences, 50(3) (2011) 309-324.
    [80] M.M. Mench, C.Y. Wang, An In Situ Method for Determination of Current Distribution in PEM Fuel Cells Applied to a Direct Methanol Fuel Cell, Journal of The Electrochemical Society, 150(1) (2003) A79-A85.
    [81] W. Dai, H. Wang, X.-Z. Yuan, J.J. Martin, D. Yang, J. Qiao, J. Ma, A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 34(23) (2009) 9461-9478.
    [82] C.T. Lu, C. Pan, Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites, Experimental Thermal and Fluid Science, 35(5) (2011) 810-815.
    [83] P.C. Lee, C. Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, Journal of Micromechanics and Microengineering, 18(2) (2008) 025005.
    [84] P.H. Lin, B.R. Fu, C. Pan, Critical heat flux on flow boiling of methanol-water mixtures in a diverging microchannel with artificial cavities, International Journal of Heat and Mass Transfer, 54(15-16) (2011) 3156-3166.
    [85] R.J. Moffat, Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science, 1(1) (1988) 3-17.
    [86] P.C. Lee, C. Pan, On the eruptive boiling in silicon-based microchannels, International Journal of Heat and Mass Transfer, 51(19–20) (2008) 4841-4849.
    [87] K.-J. Lee, J.H. Nam, C.-J. Kim, Pore-network analysis of two-phase water transport in gas diffusion layers of polymer electrolyte membrane fuel cells, Electrochimica Acta, 54(4) (2009) 1166-1176.
    [88] J.D. Holladay, Y. Wang, E. Jones, Review of Developments in Portable Hydrogen Production Using Microreactor Technology, Chemical Reviews, 104(10) (2004) 4767-4790.
    [89] W.L. Huang, T.-L. Liu, B.R. Fu, C. Pan, Boiling Heat Transfer and Efficiency for a Cross-flow Microchannel Heat Exchanger with Gas Heating, 23rd International Symposium on Transport Phenomena, (2012).
    [90] C. Lee, W.L. Huang, T.L. Liu, C. Pan, Experimental investigation on Gas-to-Gas Microchannel Heat Exchangers, The 4th International Symposium on Microchemistry and Microsystems, (2012).
    [91] P. Fernando, B. Palm, P. Lundqvist, E. Granryd, Propane heat pump with low refrigerant charge: design and laboratory tests, International Journal of Refrigeration, 27(7) (2004) 761-773.
    [92] B.-R. Fu, C.-Y. Lee, C. Pan, The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink, International Journal of Heat and Mass Transfer, 58(1–2) (2013) 53-61.
    [93] W. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, International Journal of Heat and Mass Transfer, 47(10-11) (2004) 2045-2059.
    [94] A. Kosar, C.-J. Kuo, Y. Peles, Boiling heat transfer in rectangular microchannels with reentrant cavities, International Journal of Heat and Mass Transfer, 48(23-24) (2005) 4867-4886.
    [95] L. Wojtan, R. Revellin, J.R. Thome, Investigation of saturated critical heat flux in a single, uniformly heated microchannel, Experimental Thermal and Fluid Science, 30(8) (2006) 765-774.
    [96] C.-J. Kuo, Y. Peles, Critical Heat Flux of Water at Subatmospheric Pressures in Microchannels, Journal of Heat Transfer ASME 130 (2008) 072403.
    [97] S. Vafaei, D. Wen, Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel, Journal of heat Transfer, ASME 132 (2010) 102404.
    [98] O.A. Kabov, Y.V. Lyulin, I.V. Marchuk, D.V. Zaitsev, Locally heated shear-driven liquid films in microchannels and minichannels, International Journal of Heat and Fluid Flow, 28(1) (2007) 103-112.
    [99] G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer, 25(7) (1982) 945-960.
    [100] G.R. Warrier, V.K. Dhir, L.A. Momoda, Heat transfer and pressure drop in narrow rectangular channels, Experimental Thermal and Fluid Science, 26(1) (2002) 53-64.
    [101] T.N. Tran, M.W. Wambsganss, D.M. France, Small circular- and rectangular-channel boiling with two refrigerants, International Journal of Multiphase Flow, 22(3) (1996) 485-498.
    [102] C.T. Lu, C. Pan, A highly stable microchannel heat sink for convective boiling, Journal of Micromechanics and Microengineering, 19(5) (2009) 055013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE