研究生: |
許凱能 Hsu, Kai Neng |
---|---|
論文名稱: |
適用於多輸入多輸出毫米波系統之低複雜度混合射頻波束追蹤基頻預編碼演算法與架構 Low Complexity Hybrid RF Beam-Tracking and Baseband Precoding for Millimeter Wave MIMO Systems Algorithms and Architectures |
指導教授: |
黃元豪
Huang, Yuan Hao |
口試委員: |
吳安宇
Wu, An Yeu 伍紹勳 Wu, Sau Hsuan 蔡佩芸 Tsai, Pei Yun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 多輸入多輸出 |
外文關鍵詞: | MIMO |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在未來的第五代行動通訊系統中,可以利用毫米波搭配巨量天線多輸入多輸出的技術來增加吞吐量和可靠度。因為毫米波訊號的短波長特性,同面積下可以放入更多的天線來克服嚴重的通道衰減。此研究提出三個創新的混合射頻與基頻的預編碼技術演算法,來減少射頻電路的個數與複雜度。此外,為了驗證演算法的整體效能,此研究改良了Quadriga通道模型並提出一個具有空間連續性的毫米波通道模型。與現有文獻相比,此研究提出的演算法能夠降低運算複雜度並增進硬體架構的平行化。在波束追蹤的情況下,藉由重複使用預編碼器的運算結果,運算複雜度可以有更進一步地化簡。根據在rank-reduced的毫米波通道模擬結果,此研究提出的預編碼演算法在16x16的一維線性天線陣列多輸入多輸出系統、使用者以時速十公里移動於線性路徑的環境中,可以減少60.3%至66.9%的運算複雜度。
In the future 5G system, the millimeter wave (mmWave) technology utilizes massive multiple-input multiple-output (MIMO) to increase the throughput and reliability. Due to the short wavelength of mmWave signals, more antennas can be adopted to alleviate severe channel pathloss. In this study, three novel algorithms of the joint RF and baseband precoding scheme are proposed to reduce the RF chain number and complexity. Moreover, a spatially-consistent mmWave channel model is proposed to verify the overall performance by the modified Quadriga channel. Comparing to the earlier works, the proposed algorithms lower the computation complexity and enable highly paralleled hardware architectures. In the beamtracking case, the computation complexity can be further cut down by reusing previous precoder results. In the rank-reduced mmWave channel simulation, the proposed precoding algorithms for the 16x16 linear antenna array MIMO systems can achieve the complexity reduction ratio of 60.3% to 66.9% for the case of 10 km/hr moving user in the linear track.
[1] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter
wave technology: Potentials and technical challenges,” EURASIP J. Wireless
Comm. and Networking, vol. 2007, 2007.
[2] R. Daniels and R. Heath, “60 ghz wireless communications: emerging requirements
and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50,
2007. [3] C. Sheldon, M. Seo, E. Torkildson, M. Rodwell, and U. Madhow, “Four-channel
spatial multiplexing over a millimeter-wave line-of-sight link,” in Proc. IEEE MTTS
Int. Microwave Symp. Dig., 2009, pp. 389–392.
[4] L. Ding, R. Liu, B. Jiang, and X. Gao, “Limited feedback unitary precoding using
improved euclidean distance metrics for spatial multiplexing systems,” in Proc.
Wireless Communications and Signal Processing (WCSP), 2010, pp. 1–6.
[5] M. Vu and A. Paulraj, “Mimo wireless linear precoding – using csit to improve link
performance,” IEEE Signal Processing Mag., vol. 24, no. 5, pp. 86–105, 2007.
[6] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive mimo for next
generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195,
Feb 2014.
[7] O. Ayach, R. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding
for large millimeter wave mimo systems,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2012, pp. 3724–3729.
[8] Y.-Y. Lee, C.-H.Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor
based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal
matching pursuit for millimeter wave mimo systems,” IEEE Trans. Signal
Process., vol. 63, no. 2, pp. 305–317, Jan 2015.
[9] J. Medbo, K. Borner, K. Haneda, V. Hovinen, T. Imai, J. Jarvelainen, T. Jamsa,
A. Karttunen, K. Kusume, J. Kyrolainen, P. Kyosti, J. Meinila, V. Nurmela,
L. Raschkowski, A. Roivainen, and J. Ylitalo, “Channel modelling for the fifth
generation mobile communications,” in 8th European Conference on Antennas and
Propagation (EuCAP 2014), Apr 2014, pp. 219–223.
[10] S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “Quadriga: A 3-d multi-cell
channel model with time evolution for enabling virtual field trials,” IEEE Trans.
Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Jun 2014.
[11] J. Tropp, A. Gilbert, and M. Strauss, “Simultaneous sparse approximation via
greedy pursuit,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process.
(ICASSP), vol. 5, 2005, pp. 721–724.
[12] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE J. Select. Areas Commun., vol. 5, no. 2, pp. 128–137, 1987.
[13] F. Gesekkscgaft. (2014, Apr.) Quadriga - quasi deterministic radio channel
generator (v1.2.3-307). Fraunhofer Heinrich Hertz Institute (HHI). Berlin,
Germany. [Online]. Available: http://hhi.fraunhofer.de/quadriga
[14] 3GPP, “Physical channels and modulation,” 3rd Generation Partnership Project
(3GPP), TS 36.211, Apr 2015.
[15] K. K. E. Tommi Jamsa, Pekka Kyosti, “Initial channel models based on measurements,”
METIS project, Deliverable D1.2, V1.0, ICT-317669, Apr. 2014.
[16] M. Samimi and T. Rappaport, “Ultra-wideband statistical channel model for non
line of sight millimeter-wave urban channels,” in Proc. IEEE Global Commun. Conference
(GLOBECOM), Dec 2014, pp. 3483–3489.
[17] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of mimo
channels,” IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684–702, 2003.
[18] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Hybrid precoding for millimeter
wave cellular systems with partial channel knowledge,” in Proc. Inform. Theory
Applications Workshop (ITA), 2013.