簡易檢索 / 詳目顯示

研究生: 韋杰
THORAT, VIJAYKUMAR-HARIDAS
論文名稱: 以三嗪化合物與苯炔或硼酸化合物進行脫氮偶合反應合成雜環分子之研究
Denitrogenative Coupling of Triazines with Benzynes and Boronic Acids to Access Heterocycles
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 彭之皓
Peng, Chi-How
蔡易州
Tsai, Yi-Chou
謝仁傑
Hsieh, Jen-Chieh
莊士卿
Chuang, Shih-Ching
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 483
中文關鍵詞: 鎳金屬催化苯炔硼酸
外文關鍵詞: Nickel Catalysis, Benzyne, Boronic Acid
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要探討零價鎳金屬催化脫氮偶合反應與無過渡金屬參與之分子內環化反應。內容分成三個章節:第一章敘述鎳金屬催化苯并三嗪酮化合物與苯炔進行脫氮偶合反應合成菲啶酮化合物;第二章則探討鎳金屬催化苯并三嗪酮化合物與硼酸化合物進行脫氮與鄰位官能基化反應;第三章主要講述苯并磺醯基三嗪化合物與苯炔經由鎳金屬催化合成內環磺胺類衍生物,以及無過渡金屬參與之分子內環化反應合成N-芳基內環磺胺類衍生物。
    苯并三嗪酮化合物易進行脫去氮氣分子之反應,並與過渡金屬形成穩定之五元環中間體,此中間體可穩定存在且進一步進行偶合反應或官能基化反應。因此,在第一章中,經由零價鎳金屬系統,與苯并三嗪酮化合物與苯炔進行[4+2]脫氮環化反應,合成一系列之N-芳基菲啶酮化合物,具有寬廣的官能基容忍度之優點,亦應用於高效率合成具生物活性之天然物。

    延續上一章節的研究,在第二章中使用一系列之硼酸化合物,藉由零價鎳金屬催化與苯并三嗪酮化合物進行鄰位官能基化反應。此反應不僅可合成鄰位芳香基、烷基以及烯基之苯甲醯胺化合物,亦應用於降血壓藥物如氯沙坦(Losartan)與厄貝沙坦(Irbesartan)的合成。

    第三章分成二個部分,第一部分主要探討鎳金屬催化苯并磺醯基三嗪化合物,進行脫氮反應形成五元環中間體,再與苯炔反應,高效率合成雙苯并內環磺胺類衍生物。於第二部分中發現,若移除鎳金屬催化劑,苯并磺醯基三嗪化合物會快速進行自身脫氮反應,形成雙自由基的中間體並進一步進行環化反應,合成出雙苯并內環磺胺類化合物;若反應同時加入苯炔,可進一步得到高選擇性之N-芳基取代之雙苯并內環磺胺類化合物,在此部分亦對其反應的選擇性作深入的探討與研究。


    ABSTRACT

    In this graduate dissertation, Ni(0)catalyzed denitrogenative coupling reactions and transition metal free intramolecular annulation reactions have been discussed. For the better understanding, this dissertation has been divided into three chapters. Chapter 1 deals with Ni(0)catalyzed denitrogenative [4+2] annulation of 1,2,3 benzotriazin-4-(3H)-ones with benzynes to access phenanthridinones, and Chapter 2 highlights Nicatalyzed denitrogenative ortho-arylation of 1,2,3 benzotriazin-4-(3H)-ones with organic boronic acids to synthesize ortho functionalized benzamides. Finally, chapter 3 displays Ni(0)catalyzed denitrogenative [4+2] annulation of 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to access sultam cores and its second part consists of transition metal free two component reaction involving 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to produce N-arylated sultam scaffolds.
    Chapter 1 describes a Nicatalyzed denitrogenative [4+2] annulation of 1,2,3 benzotriazin-4-(3H)-ones with benzynes. The 1,2,3 benzotriazin-4-(3H)-ones can easily undergo extrusion of molecular nitrogen and reacts with Ni(cod)2/dppm catalysis system to form five-membered azanickelacycle intermediate, such intermediate reacts with suitable reactive π-component like benzynes to produce structurally diverse class of phenanthridinone analogues in excellent yields with wide functional group tolerance. The present catalysis system can be applied for one pot synthesis of bioactive natural products like N-methylchrinasidine with excellent yield

    Chapter 2 elaborates a Nickelcatalyzed denitrogenative ortho-arylation of 1,2,3 benzotriazin-4-(3H)-ones with organic boronic acids. This catalytic reaction proceeds through five-membered azanickelacycle intermediate and transmetalation of boronic acid with suitable fluoride source like CsF. Subsequently protonation followed by reductive elimination to produce a range of ortho-substituted benzamides. The current catalysis system also utilizes styrene and methyl boronic acids as coupling partner. Moreover, this protocol has been successfully applied to synthesize antihypertensive drugs like Losartan and Irbesartan in good yield.

    Chapter 3 divided into two sections, first section demonstrates a Nickelcatalyzed denitrogenative [4+2] annulation of 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to furnish sultam scaffolds in excellent yields. The current annulation reaction proceeds through five-membered azanickelacycle intermediate, subsequently reacts with reactive π-component like benzynes to form range of sultam analogues.

    Second section displays a transition metal free two component reaction involving thermally activated 1,2,3,4-benzothiatriazine-1,1-dioxides and benzynes to produce highly functionalized N-arylated sultam architectures with wide functional group tolerance in excellent yields. The thermal decomposition of 1,2,3,4-benzothiatriazine-1,1-dioxides can generate a diradical intermediate, subsequently undergo intramolecular cyclization to form dibenzosultam. Finally, aryne insertion occurred into dibenzosultam to form N-arylated sultam analogues. Later we studied the swapping effect of arynes in above two component reaction under thermal activation pathway to synthesize dibenzosultam molecules in good yields.

    LIST OF SCHEMES XI LIST OF TABLES XIII ABBREVIATIONS XV LIST OF PUBLICATIONS XVII CHAPTER 1: NickelCatalyzed Denitrogenative (4+2) Annulation of 1,2,3 Benzotriazin-4-(3H)-ones with Benzynes for Construction of Phenanthridinone Scaffolds: Application to the Synthesis of N-methylcrinasidine. 1 1.1. Introduction 2 1.2. Synthetic Routes to Access Phenanthridinones 3 1.3. Results and Discussion 15 1.4. Substrate Scope 24 1.5. Crystal Structure 28 1.6. Competition Experiment 29 1.7. Synthesis of Natural Product 30 1.8. Proposed Reaction Mechanism 31 1.9. Conclusion 32 1.10. Experimental Section 33 1.11. Spectroscopic Data 38 1.12. References 59 CHAPTER 2: NickelCatalyzed Denitrogenative ortho-Arylation of 1,2,3 Benzotriazin-4-(3H)-ones with Organic Boronic Acids to Access Benzamide Analogues: An Efficient Route for Synthesis of Losartan and Irbesartan Drug Molecules. 75 2.1. Introduction 77 2.2. Synthetic Routes to Access ortho-Benzamides 78 3.3. Results and Discussion 93 2.4. Substrate Scope 99 2.5. Crystal Structure 105 2.6. Competition Experiment 107 2.7. Synthetic Application 108 2.8. Proposed Reaction Mechanism 110 2.9. Conclusion 111 2.10. Experimental Section 112 2.11. Spectroscopic Data 118 2.12. References 147 CHAPTER 3: Section A NickelCatalyzed Denitrogenative (4+2) Annulation of 1,2,3,4-Benzothiatriazine-1,1-dioxides with Benzynes to Access Sultam Motif 157 3.1. Introduction to Sulfonamide and Sultams 159 3.2. Benzyne History and its Generation Methods 161 3.3. Synthetic Routes to access Sultam 168 3.4. Results and Discussion 177 3.5. Substrate Scope 184 3.6. Crystal Structure 188 3.7. Competition Experiment 188 3.8. Proposed Reaction Mechanism 189 3.9. Conclusion 190 CHAPTER 3: Section B Transition Metal Free Two Component Reaction Involving Arynes and 1,2,3,4-Benzothiatriazine-1,1-dioxides as Nucleophilic Trigger: Access to Diversified Sultam Architecture 191 3.1. Benzyne Insertiopn Under Metal Free Condition 192 3.2. Result and Discussion 199 3.3. Substrate Scope 205 3.4. Swapping Effect of Benzyne 209 3.5. Substrate Scope 210 3.6. Crystal Structure 212 3.7. Mechanistic Experiment 215 3.8. EPR Spectral Analysis 217 3.9. Significance of Bond Angle in Substrate 219 3.10. Factors Affecting (4+2) Annulation and N-Arylation Products: 221 3.11. Proposed Reaction Mechanism 222 3.12. Conclusion 223 3.13. Experimental Section 224 3.14. Spectroscopic Data 226 3.15. References 270 CRYSTAL DATA, 1H, 2H NMR AND 13C SPECTRA 281 LIST OF SCHEMES CHAPTER 1 Scheme 1.1-1.27. Synthesis of Phenanthridinones by Transition Metal Catalysis or Metal Free Approach 3-13 Scheme 1.28. Competition Experiments 29 Scheme 1.29. Synthesis of N-methylcrinasidine 31 Scheme 1.30. A Proposed Catalytic Mechanism 32 CHAPTER 2 Scheme 2.1-2.39. Synthesis of ortho-arylated Benzamides by Transition Metal Catalysis or Metal Free Approach 79-92 Scheme 2.40. Competition Experiments 108 Scheme 2.41. Synthesis of Losartan Drug Molecule 109 Scheme 2.42. Synthesis of Irbesartan Drug Molecule 110 Scheme 2.43. A Proposed Catalytic Mechanism 110 CHAPTER 3 SECTION A Scheme 3.1-3.17. Benzyne History and Generation Methods 161-168 Scheme 3.18-3.36. Synthesis of Sultam Motifs by Transition Metal Catalysis, Photocatalysis and Metal Free Approach 168-176 Scheme 3.37. Competition Experiments 189 Scheme 3.38. A Proposed Reaction Mechanism 189 CHAPTER 3 SECTION B Scheme 3.1-3.16. Benzyne Insertion Under Transition Metal Free Reaction Condition 192-199 Scheme 3.17. A Proposed Reaction Mechanism 222 LIST OF TABLES CHAPTER 1 Table 1.1-1.5: Optimization Studies for NickelCatalyzed Denitrogenative (4+2) Annulation of 1,2,3 Benzotriazin-4-(3H)-ones with Benzynes. 16-22 Table 1.6: The Scope of 1,2,3-Benzotriazin-4-(3H)-one Substrates in the Annulation Reaction. 24 Table 1.7: The Scope of Benzyne in the Annulation Reaction. 27 CHAPTER 2 Table 2.1-2.5: Optimization Studies for NickelCatalyzed Denitrogenative ortho-Arylation of 1,2,3 Benzotriazin-4-(3H)-ones with Organic Boronic Acids 94-99 Table 2.6: The Scope of 1,2,3-Benzotriazin-4-(3H)-one in the o-arylation Reaction 101 Table 2.7: The Scope of Boronic acid in the o-Arylation Reaction of 1,2,3-Benzotriazin-4-(3H)-one. 103 CHAPTER 3 SECTION A Table 3.1-3.5: Optimization Studies for NickelCatalyzed Denitrogenative (4+2) Annulation of 1,2,3,4-Benzothiatriazine-1,1-dioxides with Benzynes 178-184 Table 3.6: The Scope of 1,2,3,4-Benzothiatriazine-1,1-dioxide Substrates in the Annulation Reaction 185 Table 3.7: The Scope of Aryne in the Annulation Reaction 187 CHAPTER 3 SECTION B Table 3.1-3.3: Optimization Studies for Transition Metal Free Two Component Reaction Involving Arynes and 1,2,3,4-Benzothiatriazine-1,1-dioxides 201-204 Table 3.4: The Scope of 1,2,3,4-Benzothiatriazine-1,1-dioxides in the N-Arylation Reaction 205 Table 3.5: The Scope of Aryne in the N-Arylation Reaction 208 Table 3.6: The Optimization Study for Intramolecular Arylation Reaction 209 Table 3.7: The Scope of 1,2,3,4-Benzothiatriazine-1,1-dioxides in Intramolecular Arylation Reaction 211

    [1] a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301; b) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003-8104; c) G. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404-9432; d) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333-9403; e) K. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302-9332; f) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977-9015; g) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246.
    [2] a) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 10578-10599; b) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; d) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299; e) N. A. Harry, S. Saranya, S. M. Ujwaldev, G. Anilkumar, Catal. Sci. Technol., 2019, 9, 1726-1743; f) E. A. Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015, 48, 1503-1514.
    [3] a) V. P. Ananikov, ACS Catal. 2015, 5, 1964-1971; b) J. E. Dander, N. K. Garg, ACS Catal. 2017, 7, 1413-1423; c) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; d) Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864-8907; e) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-1651; f) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; g) P. Gandeepan, C.-H. Cheng, Acc. Chem. Res. 2015, 48, 1194-1206; h) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; i) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787-8863; j) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; k) J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227; l) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976.
    [4] a) B. D. Krane, M. O. Fagbule, M. Shamma, B. Gözler, J. Nat. Prod. 1984, 47, 1-43; b) I.-S. Chen, S.-J. Wu, I.-L. Tsai, T.-S. Wu, J. M. Pezzuto, M. C. Lu, H. Chai, N. Suh, C.-M. Teng, J. Nat. Prod. 1994, 57, 1206-1211; c) B. D. Krane, M. Shamma, J. Nat. Prod. 1982, 45, 377-384; d) K. W. Bentley, Nat. Prod. Rep. 1992, 9, 365-391; e) Z. Jin, Nat. Prod. Rep. 2009, 26, 363-381; f) J. P. Michael, Nat. Prod. Rep. 1995, 12, 465-475.
    [5] a) D. Bellocchi, A. Macchiarulo, G. Costantino, R. Pellicciari, Biorg. Med. Chem. 2005, 13, 1151-1157; b) S. Patil, S. Kamath, T. Sanchez, N. Neamati, R. F. Schinazi, J. K. Buolamwini, Biorg. Med. Chem. 2007, 15, 1212-1228; c) J. Ishida, K. Hattori, H. Yamamoto, A. Iwashita, K. Mihara, N. Matsuoka, Bioorg. Med. Chem. Lett. 2005, 15, 4221-4225; d) E. Perkins, D. Sun, A. Nguyen, S. Tulac, M. Francesco, H. Tavana, H. Nguyen, S. Tugendreich, P. Barthmaier, J. Couto, E. Yeh, S. Thode, K. Jarnagin, A. Jain, D. Morgans, T. Melese, Cancer Res. 2001, 61, 4175-4183.
    [6] a) J. Hu, X. Shi, J. Chen, X. Mao, L. Zhu, L. Yu, J. Shi, Food Chem. 2014, 148, 437-444; b) D. Weltin, V. Picard, K. Aupeix, M. Varin, D. Oth, J. Marchal, P. Dufour, P. Bischoff, Int J Immunopharmacol. 1995, 17, 265-271; c) T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, T. Akiyama, H. Abe, Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1 2001, 523-528; d) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792-804; e) A. Aldinucci, G. Gerlini, S. Fossati, G. Cipriani, C. Ballerini, T. Biagioli, N. Pimpinelli, L. Borgognoni, L. Massacesi, F. Moroni, A. Chiarugi, J. Immunol. 2007, 179, 305-312.
    [7] a) C. Genès, G. Lenglet, S. Depauw, R. Nhili, S. Prado, M.-H. David-Cordonnier, S. Michel, F. Tillequin, F.-H. Porée, Eur. J. Med. Chem. 2011, 46, 2117-2131; b) A. Riahi, M. Shkoor, O. Fatunsin, M. A. Yawer, I. Hussain, C. Fischer, P. Langer, Tetrahedron 2009, 65, 9300-9315; c) M. A. Yawer, I. Hussain, I. Iqbal, A. Spannenberg, P. Langer, Tetrahedron Lett. 2008, 49, 4467-4469; d) E. C. Horning, V. L. Stromberg, H. A. Lloyd, J. Am. Chem. Soc. 1952, 74, 5153-5155; e) C. C. Woodroofe, B. Zhong, X. Lu, R. B. Silverman, J. Chem. Soc., Perkin Trans. 2, 2000, 55-59; f) B. S. Bhakuni, A. Kumar, S. J. Balkrishna, J. A. Sheikh, S. Konar, S. Kumar, Org. Lett. 2012, 14, 2838-2841; g) T. Cailly, F. Fabis, S. Rault, Tetrahedron 2006, 62, 5862-5867; h) E. Dubost, R. Magnelli, T. Cailly, R. Legay, F. Fabis, S. Rault, Tetrahedron 2010, 66, 5008-5016.
    [8] a) L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209-10212; b) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; c) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; d) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952-14955; e) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532; f) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059.
    [9] a) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; b) C.-C. Liu, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 3518-3521; c) S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2014, 53, 7324-7327; d) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908-6909; e) T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565-10569; f) N. S. Upadhyay, V. H. Thorat, R. Sato, P. Annamalai, S.-C. Chuang, C.-H. Cheng, Green Chemistry 2017, 19, 3219-3224; g) J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-L. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492-14495.
    [10] a) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449-6457; b) L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 6379-6382; c) H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236-3238; d) G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, X. Li, J. Org. Chem. 2010, 75, 7487-7490; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222.
    [11] a) D. Liang, W. Yu, N. Nguyen, J. R. Deschamps, G. H. Imler, Y. Li, A. D. MacKerell, C. Jiang, F. Xue, J. Org. Chem. 2017, 82, 3589-3596; b) M. Yuan, L. Chen, J. Wang, S. Chen, K. Wang, Y. Xue, G. Yao, Z. Luo, Y. Zhang, Org. Lett. 2015, 17, 346-349; c) T. Furuta, Y. Kitamura, A. Hashimoto, S. Fujii, K. Tanaka, T. Kan, Org. Lett. 2007, 9, 183-186; d) C. S. Yeung, X. Zhao, N. Borduas, V. M. Dong, Chem. Sci. 2010, 1, 331-336; e) D. Liang, Z. Hu, J. Peng, J. Huang, Q. Zhu, Chem. Commun. 2013, 49, 173-175; f) R. Ferraccioli, D. Carenzi, O. Rombolà, M. Catellani, Org. Lett. 2004, 6, 4759-4762.
    [12] a) G.-W. Wang, T.-T. Yuan, D.-D. Li, Angew. Chem. Int. Ed. 2011, 50, 1380-1383; b) J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880-9883; c) J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 12343-12347; d) N. Senthilkumar, K. Parthasarathy, P. Gandeepan, C.-H. Cheng, Chem. Asian J. 2013, 8, 2175-2181; e) X. Li, J. Pan, S. Song, N. Jiao, Chem. Sci. 2016, 7, 5384-5389; f) A. P. Honeycutt, J. M. Hoover, Org. Lett. 2018, 20, 7216-7219.
    [13] a) D. P. Curran, A. I. Keller, J. Am. Chem. Soc. 2006, 128, 13706-13707; b) D. Li, N. Xu, Y. Zhang, L. Wang, Chem. Commun. 2014, 50, 14862-14865; c) S. L. Yedage, B. M. Bhanage, J. Org. Chem. 2016, 81, 4103-4111; d) Y. Moon, E. Jang, S. Choi, S. Hong, Org. Lett. 2018, 20, 240-243; e) S. Zhang, L. Li, M. Xue, R. Zhang, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443-3446; f) A. Kehl, V. M. Breising, D. Schollmeyer, S. R. Waldvogel, Chem. Eur. J. 2018, 24, 17230-17233.
    [14] a) B. Banerji, S. Chatterjee, K. Chandrasekhar, C. Nayan, S. K. Killi, Eur. J. Org. Chem. 2017, 2017, 5214-5218; b) Y. He, C. Yuan, Z. Jiang, L. Shuai, Q. Xiao, Org. Lett. 2019, 21, 185-189; c) C. Lu, A. V. Dubrovskiy, R. C. Larock, J. Org. Chem. 2012, 77, 8648-8656; d) X. Peng, W. Wang, C. Jiang, D. Sun, Z. Xu, C.-H. Tung, Org. Lett. 2014, 16, 5354-5357; e) S. Pimparkar, M. Jeganmohan, Chem. Commun. 2014, 50, 12116-12119; f) M. Feng, B. Tang, N. Wang, H.-X. Xu, X. Jiang, Angew. Chem. Int. Ed. 2015, 54, 14960-14964; g) M. Feng, B. Tang, H.-X. Xu, X. Jiang, Org. Lett. 2016, 18, 4352-4355; h) T.-Y. Zhang, J.-B. Lin, Q.-Z. Li, J.-C. Kang, J.-L. Pan, S.-H. Hou, C. Chen, S.-Y. Zhang, Org. Lett. 2017, 19, 1764-1767; i) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55.
    [15] a) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; b) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; c) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362.
    [16] a) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; b) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; c) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
    [17] a) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; b) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; c) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; d) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551; e) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407.
    [18] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
    [19] a) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; b) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; c) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; d) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; e) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235; f) W. Li, X.-F. Wu, Org. Lett. 2015, 17, 1910-1913; g) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431.
    [20] a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872; b) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; c) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; d) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; e) R. Zeng, G. Dong, J. Am. Chem. Soc. 2015, 137, 1408-1411; f) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511.
    [21] a) Y. Moon, S. Kwon, D. Kang, H. Im, S. Hong, Adv. Synth. Catal. 2016, 358, 958-964; b) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047; c) A. Joshi, D. Chandra Mohan, S. Adimurthy, Org. Lett. 2016, 18, 464-467; d) V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6, 1928-1931; e) Y. Shi, V. Gevorgyan, Chem. Commun. 2015, 51, 17166-17169; f) R. Shen, C. Dong, J. Yang, L.-B. Han, Adv. Synth. Catal. 2018, 360, 4252-4258; g) A. Joshi, D. C. Mohan, S. Adimurthy, J. Org. Chem. 2016, 81, 9461-9469; h) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051.
    [22] a) L. Friedman, F. M. Logullo, J. Org. Chem. 1969, 34, 3089-3092; b) J.-A. García-López, M. F. Greaney, Org. Lett. 2014, 16, 2338-2341; c) J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291; d) H. Yoshio, S. Takaaki, K. Hiroshi, Chem. Lett. 1983, 12, 1211-1214; e) L. Verbit, J. S. Levy, H. Rabitz, W. Kwalwasser, Tetrahedron Lett. 1966, 7, 1053-1055; f) Y. Sumida, T. Kato, T. Hosoya, Org. Lett. 2013, 15, 2806-2809; g) T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679; h) S. Kovács, Á. I. Csincsi, T. Z. Nagy, S. Boros, G. Timári, Z. Novák, Org. Lett. 2012, 14, 2022-2025; i) T. Kitamura, M. Yamane, J. Chem. Soc., Chem. Commun. 1995, 983-984; j) T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730-1733; k) L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1549-1549; l) T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron Lett. 1991, 32, 6735-6736.
    [23] a) H. Takikawa, A. Nishii, T. Sakai, K. Suzuki, Chem. Soc. Rev. 2018, 47, 8030-8056; b) P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550-3577; c) R. Sanz, Org. Prep. Proced. Int. 2008, 40, 215-291; d) H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502-528; e) J. Shi, Y. Li, Y. Li, Chem. Soc. Rev. 2017, 46, 1707-1719; f) R. Karmakar, D. Lee, Chem. Soc. Rev. 2016, 45, 4459-4470; g) A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191-218; h) F. I. M. Idiris, C. R. Jones, Org. Biomol. Chem. 2017, 15, 9044-9056; i) A. Yoshimura, A. Saito, V. V. Zhdankin, Chem. Eur. J. 2018, 24, 15156-15166; j) D. Pérez, D. Peña, E. Guitián, Eur. J. Org. Chem. 2013, 2013; k) C. Holden , M. F. Greaney, Angew. Chem. Int. Ed. 2014, 53, 5746-5749; l) J.-A. García-López, M. F. Greaney, Chem. Soc. Rev. 2016, 45, 6766-6798; m) A. E. Goetz, T. K. Shah, N. K. Garg, Chem. Commun. 2015, 51, 34-45; n) C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766-3778; o) O. J. Diamond, T. B. Marder, Org. Chem. Front. 2017, 4, 891-910; p) A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140-3152; q) T. Roy, A. T. Biju, Chem. Commun. 2018, 54, 2580-2594; r) S. S. Bhojgude, A. T. Biju, Angew. Chem. Int. Ed. 2012, 51, 1520-1522; s) h. Pellissier, M. Santelli, The Use of Arynes in Organic Synthesis, Vol. 59, 2003; t) H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701-730.
    [24] a) X. Yang, G. C. Tsui, Chem. Sci. 2018, 9, 8871-8875; b) H. Tanaka, H. Kuriki, T. Kubo, I. Osaka, H. Yoshida, Chem. Commun. 2019; c) X. Yang, G. C. Tsui, Org. Lett. 2018, 20, 1179-1182; d) Y. Dong, B. Liu, P. Chen, Q. Liu, M. Wang, Angew. Chem. Int. Ed. 2014, 53, 3442-3446; e) M. Pérez-Gómez, J.-A. García-López, Angew. Chem. Int. Ed. 2016, 55, 14389-14393; f) C. Lu, N. A. Markina, R. C. Larock, J. Org. Chem. 2012, 77, 11153-11160; g) H. Yoon, A. Lossouarn, F. Landau, M. Lautens, Org. Lett. 2016, 18, 6324-6327; h) T. Yao, D. He, Org. Lett. 2017, 19, 842-845; i) J.-T. Hu, B. Zheng, Y.-C. Chen, Q. Xiao, Org. Chem. Front. 2018, 5, 2045-2050; j) S. Feng, S. Li, J. Li, J. Wei, Org. Chem. Front. 2019, 6, 517-522; k) Z. Zuo, H. Wang, Y. Diao, Y. Ge, J. Liu, X. Luan, ACS Catal. 2018, 8, 11029-11034; l) S.-L. Niu, J. Hu, K. He, Y.-C. Chen, Q. Xiao, Org. Lett. 2019.
    [25] a) S. Bhuvaneswari, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2006, 8, 5581-5584; b) T. T. Jayanth, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2005, 7, 2921-2924; c) K. Parthasarathy, H. Han, C. Prakash, C.-H. Cheng, Chem. Commun. 2012, 48, 6580-6582; d) S. Bhuvaneswari, M. Jeganmohan, M.-C. Yang, C.-H. Cheng, Chem. Commun. 2008, 2158-2160; e) T. T. Jayanth, C.-H. Cheng, Chem. Commun. 2006, 894-896; f) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Angew. Chem. Int. Ed. 2009, 48, 391-394; g) J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2008, 2992-2994; h) J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 2459-2461; i) J.-C. Hsieh, D. K. Rayabarapu, C.-H. Cheng, Chem. Commun. 2004, 532-533; j) T. T. Jayanth, C.-H. Cheng, Angew. Chem. Int. Ed. 2007, 46, 5921-5924; k) T. T. Jayanth, M. Jeganmohan, M.-J. Cheng, S.-Y. Chu, C.-H. Cheng, J. Am. Chem. Soc. 2006, 128, 2232-2233; l) S. Bhuvaneswari, M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2008, 5013-5015; m) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Chem. Asian J. 2010, 5, 153-159; n) M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2006, 2454-2456.
    [26] a) X. Huang, W. Zhao, D.-L. Chen, Y. Zhan, T. Zeng, H. Jin, B. Peng, Chem. Commun. 2019, 55, 2070-2073; b) M.-G. Zhou, R.-H. Dai, S.-K. Tian, Chem. Commun. 2018, 54, 6036-6039; c) R. O. Torres-Ochoa, T. Buyck, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 5679-5683; d) F. I. M. Idiris, C. E. Majesté, G. B. Craven, C. R. Jones, Chem. Sci. 2018, 9, 2873-2878; e) E. Yen-Pon, P. A. Champagne, L. Plougastel, S. Gabillet, P. Thuéry, M. Johnson, G. Muller, G. Pieters, F. Taran, K. N. Houk, D. Audisio, J. Am. Chem. Soc. 2019, 141, 1435-1440; f) A. K. Dhiman, R. Kumar, R. Kumar, U. Sharma, J. Org. Chem. 2017, 82, 12307-12317; g) G. S. Ghotekar, A. C. Shaikh, M. Muthukrishnan, J. Org. Chem. 2019, 84, 2269-2276; h) H. Xu, J. He, J. Shi, L. Tan, D. Qiu, X. Luo, Y. Li, J. Am. Chem. Soc. 2018, 140, 3555-3559; i) H. Hazarika, K. Neog, A. Sharma, B. Das, P. Gogoi, J. Org. Chem. 2019, 84, 5846-5854.
    [27] a) L. Zhou, H. Li, W. Zhang, L. Wang, Chem. Commun. 2018, 54, 4822-4825; b) R. Fan, B. Liu, T. Zheng, K. Xu, C. Tan, T. Zeng, S. Su, J. Tan, Chem. Commun. 2018, 54, 7081-7084; c) A. S. Kumar, G. Thirupathi, G. S. Reddy, D. B. Ramachary, Chem. Eur. J. 2019, 25, 1177-1183; d) S.-E. Suh, S. Chen, K. N. Houk, D. M. Chenoweth, Chem. Sci. 2018, 9, 7688-7693; e) M. Mesgar, J. Nguyen-Le, O. Daugulis, J. Am. Chem. Soc. 2018, 140, 13703-13710; f) W.-M. Shu, S. Liu, J.-X. He, S. Wang, A.-X. Wu, J. Org. Chem. 2018, 83, 9156-9165; g) L. Cui, G. Zhu, S. Liu, X. Zhao, J. Qu, B. Wang, J. Org. Chem. 2018, 83, 5044-5051.
    [28] a) S. Su, J. Li, M. Sun, H. Zhao, Y. Chen, J. Li, Chem. Commun. 2018, 54, 9611-9614; b) S. Dubbu, Y. D. Vankar, Eur. J. Org. Chem. 2018, 2018, 5060-5064; c) J. Shi, H. Xu, D. Qiu, J. He, Y. Li, J. Am. Chem. Soc. 2017, 139, 623-626; d) Y. Li, D. Qiu, R. Gu, J. Wang, J. Shi, Y. Li, J. Am. Chem. Soc. 2016, 138, 10814-10817; e) W. Xiong, C. Qi, R. Cheng, H. Zhang, L. Wang, D. Yan, H. Jiang, Chem. Commun. 2018, 54, 5835-5838; f) G. Chen, M. Hu, Y. Peng, J. Org. Chem. 2018, 83, 1591-1597; g) H. Jia, Z. Guo, H. Liu, B. Mao, X. Shi, H. Guo, Chem. Commun. 2018, 54, 7050-7053; h) H. Ryu, J. Seo, H. M. Ko, J. Org. Chem. 2018, 83, 14102-14109; i) A. Shamsabadi, V. Chudasama, Chem. Commun. 2018, 54, 11180-11183.
    [29] a) G. Min, J. Seo, H. M. Ko, J. Org. Chem. 2018, 83, 8417-8425; b) A. Sharma, P. Gogoi, Org. Biomol. Chem. 2019, 17, 333-346; c) W. Hu, C. Zhang, J. Huang, Y. Guo, Z. Fu, W. Huang, Org. Lett. 2019, 21, 941-945; d) J. Tan, B. Liu, S. Su, Org. Chem. Front. 2018, 5, 3093-3097; e) P. Gouthami, L. N. Chavan, R. Chegondi, S. Chandrasekhar, J. Org. Chem. 2018, 83, 3325-3332; f) X. Pan, Y. Ma, Z. Liu, Org. Biomol. Chem. 2018, 16, 7393-7399; g) H. Jiang, Y. Zhang, W. Xiong, J. Cen, L. Wang, R. Cheng, C. Qi, W. Wu, Org. Lett. 2019, 21, 345-349; h) B. Li, S. Mai, Q. Song, Org. Chem. Front. 2018, 5, 1639-1642.
    [30] a) X. Pan, Z. Liu, Org. Chem. Front. 2018, 5, 1798-1810; b) J. Kwon, B. M. Kim, Org. Lett. 2019, 21, 428-433; c) S.-J. Li, Y. Wang, J.-K. Xu, D. Xie, S.-K. Tian, Z.-X. Yu, Org. Lett. 2018, 20, 4545-4548; d) N. S. V. M. Rao Mangina, R. Guduru, G. V. Karunakar, Org. Biomol. Chem. 2018, 16, 2134-2142; e) Y. Addepalli, Z. Yu, J. Ji, C. Zou, Z. Wang, Y. He, Org. Biomol. Chem. 2018, 16, 6077-6085; f) G.-J. Mei, S.-L. Xu, W.-Q. Zheng, C.-Y. Bian, F. Shi, J. Org. Chem. 2018, 83, 1414-1421; g) C. E. Hendrick, Q. Wang, J. Org. Chem. 2015, 80, 1059-1069; h) K. Neog, B. Das, P. Gogoi, Org. Biomol. Chem. 2018, 16, 3138-3150; i) D. Tejedor, A. Díaz-Díaz, R. Diana-Rivero, S. Delgado-Hernández, F. García-Tellado, Org. Lett. 2018, 20, 7987-7990; j) P. Garg, A. Singh, Org. Lett. 2018, 20, 1320-1323.
    [31] a) B. Cheng, B. Bao, Y. Chen, N. Wang, Y. Li, R. Wang, H. Zhai, Org. Chem. Front. 2017, 4, 1636-1639; b) B. Kalvacherla, S. Batthula, S. Balasubramanian, R. K. Palakodety, Org. Lett. 2018, 20, 3824-3828; c) R. Singh, K. Nagesh, D. Yugandhar, A. V. G. Prasanthi, Org. Lett. 2018, 20, 4848-4853; d) M. Serafini, A. Griglio, S. Viarengo, S. Aprile, T. Pirali, Org. Biomol. Chem. 2017, 15, 6604-6612; e) N. Hussain, K. Jana, B. Ganguly, D. Mukherjee, Org. Lett. 2018, 20, 1572-1575; f) X.-P. Ma, L.-G. Li, H.-P. Zhao, M. Du, C. Liang, D.-L. Mo, Org. Lett. 2018, 20, 4571-4574; g) Y. Okugawa, Y. Hayashi, S. Kawauchi, K. Hirano, M. Miura, Org. Lett. 2018, 20, 3670-3673; h) L. Zhang, X. Li, Y. Sun, W. Zhao, F. Luo, X. Huang, L. Lin, Y. Yang, B. Peng, Org. Biomol. Chem. 2017, 15, 7181-7189; i) C. Lv, C. Wan, S. Liu, Y. Lan, Y. Li, Org. Lett. 2018, 20, 1919-1923; j) Z. Wang, Y. Addepalli, Y. He, Org. Lett. 2018, 20, 644-647; k) M. Wang, Z. Huang, Org. Biomol. Chem. 2016, 14, 10185-10188; l) A. G. Talero, B. S. Martins, A. C. B. Burtoloso, Org. Lett. 2018, 20, 7206-7211; m) D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang, X. She, Org. Lett. 2017, 19, 3600-3603; n) X. Li, Y. Sun, X. Huang, L. Zhang, L. Kong, B. Peng, Org. Lett. 2017, 19, 838-841; o) R. Samineni, J. Madapa, P. Srihari, G. Mehta, Org. Lett. 2017, 19, 3119-3122; p) P. Trinchera, W. Sun, J. E. Smith, D. Palomas, R. Crespo-Otero, C. R. Jones, Org. Lett. 2017, 19, 4644-4647; q) R. Samineni, C. R. C. Bandi, P. Srihari, G. Mehta, Org. Lett. 2016, 18, 6184-6187.
    [32] a) R. N. Gaykar, S. Bhattacharjee, A. T. Biju, Org. Lett. 2019, 21, 737-740; b) S. Bhattacharjee, A. Guin, R. N. Gaykar, A. T. Biju, Org. Lett. 2019; c) T. Roy, R. N. Gaykar, S. Bhattacharjee, A. T. Biju, Chem. Commun. 2019, 55, 3004-3007; d) T. Roy, M. Thangaraj, R. G. Gonnade, A. T. Biju, Chem. Commun. 2016, 52, 9044-9047; e) T. Roy, S. S. Bhojgude, T. Kaicharla, M. Thangaraj, B. Garai, A. T. Biju, Org. Chem. Front. 2016, 3, 71-76; f) A. Bhunia, T. Kaicharla, D. Porwal, R. G. Gonnade, A. T. Biju, Chem. Commun. 2014, 50, 11389-11392; g) M. Thangaraj, S. S. Bhojgude, M. V. Mane, A. T. Biju, Chem. Commun. 2016, 52, 1665-1668; h) R. N. Gaykar, A. Bhunia, A. T. Biju, J. Org. Chem. 2018, 83, 11333-11340; i) T. Roy, M. Thangaraj, T. Kaicharla, R. V. Kamath, R. G. Gonnade, A. T. Biju, Org. Lett. 2016, 18, 5428-5431; j) M. Thangaraj, R. N. Gaykar, T. Roy, A. T. Biju, J. Org. Chem. 2017, 82, 4470-4476; k) S. S. Bhojgude, T. Roy, R. G. Gonnade, A. T. Biju, Org. Lett. 2016, 18, 5424-5427; l) M. Thangaraj, S. S. Bhojgude, S. Jain, R. G. Gonnade, A. T. Biju, J. Org. Chem. 2016, 81, 8604-8611; m) T. Roy, D. R. Baviskar, A. T. Biju, J. Org. Chem. 2015, 80, 11131-11137; n) S. S. Bhojgude, D. R. Baviskar, R. G. Gonnade, A. T. Biju, Org. Lett. 2015, 17, 6270-6273; o) M. Thangaraj, S. S. Bhojgude, R. H. Bisht, R. G. Gonnade, A. T. Biju, J. Org. Chem. 2014, 79, 4757-4762; p) T. Kaicharla, M. Thangaraj, A. T. Biju, Org. Lett. 2014, 16, 1728-1731; q) S. S. Bhojgude, M. Thangaraj, E. Suresh, A. T. Biju, Org. Lett. 2014, 16, 3576-3579; r) A. Bhunia, T. Roy, R. G. Gonnade, A. T. Biju, Org. Lett. 2014, 16, 5132-5135.
    [33] a) M. M. Ahire, R. Khan, S. B. Mhaske, Org. Lett. 2017, 19, 2134-2137; b) R. A. Dhokale, S. B. Mhaske, J. Org. Chem. 2017, 82, 4875-4882; c) M. M. Ahire, M. B. Thoke, S. B. Mhaske, Org. Lett. 2018, 20, 848-851; d) V. G. Pandya, S. B. Mhaske, Org. Lett. 2018, 20, 1483-1486; e) V. G. Pandya, S. B. Mhaske, Org. Lett. 2014, 16, 3836-3839; f) R. A. Dhokale, P. R. Thakare, S. B. Mhaske, Org. Lett. 2012, 14, 3994-3997.
    [34] a) S. Chakrabarty, I. Chatterjee, L. Tebben, A. Studer, Angew. Chem. Int. Ed. 2013, 52, 2968-2971; b) F. Sha, X. Huang, Angew. Chem. Int. Ed. 2009, 48, 3458-3461; c) E. Yoshioka, S. Kohtani, H. Miyabe, Angew. Chem. Int. Ed. 2011, 50, 6638-6642; d) T. Pirali, F. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, Angew. Chem. Int. Ed. 2012, 51, 1006-1009; e) K. M. Allan, C. D. Gilmore, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 4488-4491; f) A. A. Cant, G. H. V. Bertrand, J. L. Henderson, L. Roberts, M. F. Greaney, Angew. Chem. Int. Ed. 2009, 48, 5199-5202; g) W.-J. Yoo, T. V. Q. Nguyen, S. Kobayashi, Angew. Chem. Int. Ed. 2014, 53, 10213-10217; h) E. Yoshioka, H. Tanaka, S. Kohtani, H. Miyabe, Org. Lett. 2013, 15, 3938-3941; i) H. Yoshida, T. Morishita, H. Fukushima, J. Ohshita, A. Kunai, Org. Lett. 2007, 9, 3367-3370; j) T. Morishita, H. Fukushima, H. Yoshida, J. Ohshita, A. Kunai, J. Org. Chem. 2008, 73, 5452-5457; k) H. Yoshida, M. Watanabe, H. Fukushima, J. Ohshita, A. Kunai, Org. Lett. 2004, 6, 4049-4051; l) H. Yoshida, T. Minabe, J. Ohshita, A. Kunai, Chem. Commun. 2005, 3454-3456; m) H. Yoshida, Y. Mimura, J. Ohshita, A. Kunai, Chem. Commun. 2007, 2405-2407; n) H. Yoshida, T. Morishita, J. Ohshita, Org. Lett. 2008, 10, 3845-3847; o) H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, Angew. Chem. Int. Ed. 2004, 43, 3935-3938; p) A. Bunescu, C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 10284-10286; q) J. B. Feltenberger, R. Hayashi, Y. Tang, E. S. C. Babiash, R. P. Hsung, Org. Lett. 2009, 11, 3666-3669.
    [35] a) J.-A. García-López, M. Çetin, M. F. Greaney, Angew. Chem. Int. Ed. 2015, 54, 2156-2159; b) C. M. Holden, S. M. A. Sohel, M. F. Greaney, Angew. Chem. Int. Ed. 2016, 55, 2450-2453; c) A. A. Cant, L. Roberts, M. F. Greaney, Chem. Commun. 2010, 46, 8671-8673; d) J. L. Henderson, A. S. Edwards, M. F. Greaney, Org. Lett. 2007, 9, 5589-5592; e) C. Hall, J. L. Henderson, G. Ernouf, M. F. Greaney, Chem. Commun. 2013, 49, 7602-7604; f) D. G. Pintori, M. F. Greaney, Org. Lett. 2010, 12, 168-171; g) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, Org. Lett. 2011, 13, 3667-3669; h) K. Biswas, M. F. Greaney, Org. Lett. 2011, 13, 4946-4949.
    [36] a) A. V. Dubrovskiy, P. Jain, F. Shi, G. H. Lushington, C. Santini, P. Porubsky, R. C. Larock, ACS Comb. Sci. 2013, 15, 193-201; b) Y. Fang, D. C. Rogness, R. C. Larock, F. Shi, J. Org. Chem. 2012, 77, 6262-6270; c) D. C. Rogness, N. A. Markina, J. P. Waldo, R. C. Larock, J. Org. Chem. 2012, 77, 2743-2755; d) P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, Org. Lett. 2011, 13, 3340-3343; e) C. Wu, Y. Fang, R. C. Larock, F. Shi, Org. Lett. 2010, 12, 2234-2237; f) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113; g) R. V. Rozhkov, R. C. Larock, J. Org. Chem. 2010, 75, 4131-4134; h) A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2010, 12, 3117-3119; i) A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2010, 12, 1180-1183; j) Z. Liu, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 15716-15717; k) S. A. Worlikar, R. C. Larock, Org. Lett. 2009, 11, 2413-2416; l) D. C. Rogness, R. C. Larock, J. Org. Chem. 2010, 75, 2289-2295; m) J. Zhao, P. Li, C. Wu, H. Chen, W. Ai, R. Sun, H. Ren, R. C. Larock, F. Shi, Org. Biomol. Chem. 2012, 10, 1922-1930; n) J. Zhao, R. C. Larock, Org. Lett. 2005, 7, 4273-4275; o) A. Kivrak, R. C. Larock, J. Org. Chem. 2010, 75, 7381-7387; p) X. Zhang, R. C. Larock, Org. Lett. 2005, 7, 3973-3976; q) S. A. Worlikar, R. C. Larock, J. Org. Chem. 2009, 74, 9132-9139; r) N. A. Markina, A. V. Dubrovskiy, R. C. Larock, Org. Biomol. Chem. 2012, 10, 2409-2412.
    [37] a) A. S. Clark, B. Deans, M. F. G. Stevens, M. J. Tisdale, R. T. Wheelhouse, B. J. Denny, J. A. Hartley, J. Med. Chem. 1995, 38, 1493-1504; b) K. Shiva Kumar, R. Adepu, S. Sandra, D. Rambabu, G. Rama Krishna, C. Malla Reddy, P. Misra, M. Pal, Bioorg. Med. Chem. Lett. 2012, 22, 1146-1150; c) G. Wang, X. Chen, Y. Deng, Z. Li, X. Xu, J. Agric. Food. Chem. 2015, 63, 6883-6889; d) M. L. d. C. Barbosa, L. M. Lima, R. Tesch, C. M. R. Sant'Anna, F. Totzke, M. H. G. Kubbutat, C. Schächtele, S. A. Laufer, E. J. Barreiro, Eur. J. Med. Chem. 2014, 71, 1-14.
    [38] a) R. Suau, A. I. Gómez, R. Rico, Phytochemistry 1990, 29, 1710-1712; b) G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett. 2005, 7, 1943-1946; c) Z. Chen, X. Wang, Org. Biomol. Chem. 2017, 15, 5790-5796; d) R. Sanz, Y. Fernández, M. P. Castroviejo, A. Pérez, F. J. Fañanás, Eur. J. Org. Chem. 2007, 2007, 62-69; e) W. Shen, J. Li, C. Zhang, M. Shi, J. Zhang, Chem. Asian J. 2016, 11, 1883-1886; f) R. Shi, H. Niu, L. Lu, A. Lei, Chem. Commun. 2017, 53, 1908-1911; g) T.-T. Fan-Chiang, H.-K. Wang, J.-C. Hsieh, Tetrahedron 2016, 72, 5640-5645; h) R. P. Korivi, C.-H. Cheng, Chem. Eur. J. 2010, 16, 282-287.
    [39] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179-5182; b) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 2002, 124, 5059-5067; c) H. A. Duong, J. Louie, J. Organomet. Chem. 2005, 690, 5098-5104; d) H. A. Duong, J. Louie, Tetrahedron 2006, 62, 7552-7559; e) J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890-3908.
    [40] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
    [41] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    [42] a) Y. Sato, T. Tamura, A. Kinbara, M. Mori, Adv. Synth. Catal. 2007, 349, 647- 661; b) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 2002, 1454-1458; c) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827-5828; d) E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280-7286.
    Chapter-2
    [1] a) A. F. Fliri, W. T. Loging, R. A. Volkmann, J. Med. Chem. 2009, 52, 8038-8046; b) R. R. Wexler, W. J. Greenlee, J. D. Irvin, M. R. Goldberg, K. Prendergast, R. D. Smith, P. B. M. W. M. Timmermans, J. Med. Chem. 1996, 39, 625-656; c) C. A. Bernhart, P. M. Perreaut, B. P. Ferrari, Y. A. Muneaux, J. L. A. Assens, J. Clement, F. Haudricourt, C. F. Muneaux, J. E. Taillades, M.-A. Vignal, J. Gougat, P. R. Guiraudou, C. A. Lacour, A. Roccon, C. F. Cazaubon, J.-C. Breliere, G. Le Fur, D. Nisato, J. Med. Chem. 1993, 36, 3371-3380; d) K. Kubo, Y. Kohara, Y. Yoshimura, Y. Inada, Y. Shibouta, Y. Furukawa, T. Kato, K. Nishikawa, T. Naka, J. Med. Chem. 1993, 36, 2343-2349; e) J. V. Duncia, A. T. Chiu, D. J. Carini, G. B. Gregory, A. L. Johnson, W. A. Price, G. J. Wells, P. C. Wong, J. C. Calabrese, P. B. M. W. M. Timmermans, J. Med. Chem. 1990, 33, 1312-1329; f) L. L. Chang, W. T. Ashton, K. L. Flanagan, T.-B. Chen, S. S. O'Malley, G. J. Zingaro, S. D. Kivlighn, P. K. S. Siegl, V. J. Lotti, J. Med. Chem. 1995, 38, 3741-3758; g) D. J. Carini, J. V. Duncia, P. E. Aldrich, A. T. Chiu, A. L. Johnson, M. E. Pierce, W. A. Price, J. B. Santella, G. J. Wells, J. Med. Chem. 1991, 34, 2525-2547.
    [2] a) P. Bühlmayer, P. Furet, L. Criscione, M. de Gasparo, S. Whitebread, T. Schmidlin, R. Lattmann, J. Wood, Bioorg. Med. Chem. Lett. 1994, 4, 29-34; b) J. H. Kim, J. H. Lee, S. H. Paik, J. H. Kim, Y. H. Chi, Arch. Pharmacal Res. 2012, 35, 1123-1126; c) J. N. Cohn, G. Tognoni, R. D. Glazer, D. Spormann, A. Hester, J. Card. Fail. 1999, 5, 155-160; d) J. N. Cohn, G. Tognoni, Engl. J. Med. 2001, 345, 1667-1675.
    [3] a) D. J. Carini, R. J. Ardecky, C. L. Ensinger, J. R. Pruitt, R. R. Wexler, P. C. Wong, S.-M. Huang, B. J. Aungst, P. B. M. W. M. Timmermans, Bioorg. Med. Chem. Lett. 1994, 4, 63-68; b) W. Wienen, N. Hauel, J. C. Van Meel, B. Narr, U. Ries, M. Entzeroth, Br. J. Pharmacol. 1993, 110, 245-252; c) P. Davies, R. Katzman, R. D. Terry, Nature 1980, 288, 279-280; d) G. A. MacGregor, N. D. Markandu, J. E. Roulston, J. C. Jones, J. J. Morton, Nature 1981, 291, 329-331; e) M. Ondetti, B. Rubin, D. Cushman, Science 1977, 196, 441-444; f) J. P. Habashi, D. P. Judge, T. M. Holm, R. D. Cohn, B. L. Loeys, T. K. Cooper, L. Myers, E. C. Klein, G. Liu, C. Calvi, M. Podowski, E. R. Neptune, M. K. Halushka, D. Bedja, K. Gabrielson, D. B. Rifkin, L. Carta, F. Ramirez, D. L. Huso, H. C. Dietz, Science 2006, 312, 117-121.
    [4] a) M. B. Vallotton, Trends Pharmacol. Sci. 1987, 8, 69-74; b) A. R. De Caterina, A. R. Harper, F. Cuculi, Vasc. Health. Risk. Manag. 2012, 8, 299-305; c) J. Martin, H. Krum, Pharmacol. Res. 2002, 46, 203-212; d) J. V. Duncia, D. J. Carini, A. T. Chiu, A. L. Johnson, W. A. Price, P. C. Wong, R. R. Wexler, P. B. M. W. M. Timmermans, Med. Res. Rev. 1992, 12, 149-191; e) N. R. Poulter, D. Prabhakaran, M. Caulfield, Lancet 2015, 386, 801-812; f) P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, J. He, Lancet 2005, 365, 217-223; g) M.-H. Xie, F.-Y. Liu, P. C. Wong, P. B. M. W. M. Timmermans, M. G. Cogan, Kidney Intl. 1990, 38, 473-479; h) R. L. Soffer, I. Sen, J. Cardiovasc. Pharmacol. 1985, 7, S69-S72; i) K. F. Hilgers, J. F. E. Mann, J. Am. Soc. Nephrol. 2002, 13, 1100-1108; j) R. J. Cody, Drugs 1994, 47, 586-598; k) R. T. Tsuyuki, M. A. McDonald, Circulation 2006, 114, 855-860; l) B. F. Uretsky, T. Generalovich, P. S. Reddy, R. B. Spangenberg, W. P. Follansbee, Circulation 1983, 67, 823-828.
    [5] a) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074-1086; b) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788-802; c) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; d) I. Hussain, T. Singh, Adv. Synth. Catal. 2014, 356, 1661-1696; e) G. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384-5427; f) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; g) Y. Segawa, T. Maekawa, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66-81; h) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-5115; i) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726-11743.
    [6] a) R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461-1473; b) F. Shibahara, T. Murai, Asian J. Org. Chem. 2013, 2, 624-636; c) L. C. M. Castro, N. Chatani, Chem. Lett. 2015, 44, 410-421; d) D. Zhao, J. You, C. Hu, Chem. Eur. J. 2011, 17, 5466-5492; e) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238; f) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; g) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169; h) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492; i) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780-1824; j) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; k) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918.
    [7] a) I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173-1193; b) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902-4911; c) J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013, 2013, 19-30; d) L. Ackermann, J. Org. Chem. 2014, 79, 8948-8954; e) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369; f) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; g) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295; h) W.-H. Rao, B.-F. Shi, Org. Chem. Front. 2016, 3, 1028-1047; i) W. Ma, P. Gandeepan, J. Li, L. Ackermann, Org. Chem. Front. 2017, 4, 1435-1467; j) S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479; k) R. Giri, S. Thapa, A. Kafle, Adv. Synth. Catal. 2014, 356, 1395-1411.
    [8] a) S. Oi, S. Fukita, Y. Inoue, Chem. Commun. 1998, 2439-2440; b) S. Yang, B. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 6066-6067; c) Z. Hai, X. Yun‐He, C. Wan‐Jun, L. Teck‐Peng, Angew. Chem. Int. Ed. 2009, 48, 5355-5357; d) M.-Z. Lu, P. Lu, Y.-H. Xu, T.-P. Loh, Org. Lett. 2014, 16, 2614-2617; e) F. Kakiuchi, S. Kan, K. Igi, N. Chatani, S. Murai, J. Am. Chem. Soc. 2003, 125, 1698-1699; f) J. He, R. Takise, H. Fu, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 4618-4621; g) M. Shang, S.-Z. Sun, H.-X. Dai, J.-Q. Yu, Org. Lett. 2014, 16, 5666-5669; h) X. Chen, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 12634-12635; i) C. S. Yeung, X. Zhao, N. Borduas, V. M. Dong, Chem. Sci. 2010, 1, 331-336; j) B. Liu, Z.-Z. Zhang, X. Li, B.-F. Shi, Org. Chem. Front. 2016, 3, 897-900; k) S. Zhao, B. Liu, B.-B. Zhan, W.-D. Zhang, B.-F. Shi, Org. Lett. 2016, 18, 4586-4589.
    [9] a) L. Jie, A. Lutz, Chem. Eur. J. 2015, 21, 5718-5722; b) G. Qingwen, C. Xiang, H. Liang, W. Dadian, L. Jidan, T. Ze, Adv. Synth. Catal. 2016, 358, 509-514; c) Y. Aihara, N. Chatani, Chem. Sci. 2013, 4, 664-670; d) A. Yokota, Y. Aihara, N. Chatani, J. Org. Chem. 2014, 79, 11922-11932; e) A. P. Honeycutt, J. M. Hoover, ACS Catal. 2017, 7, 4597-4601; f) P. Li, G.-W. Wang, H. Chen, L. Wang, Org. Biomol. Chem. 2018, 16, 8783-8790; g) C. Du, P.-X. Li, X. Zhu, J.-F. Suo, J.-L. Niu, M.-P. Song, Angew. Chem. Int. Ed. 2016, 55, 13571-13575; h) Q. Bu, E. Gońka, K. Kuciński, L. Ackermann, Chem. Eur. J. 2019, 25, 2213-2216; i) N. Lv, Z. Chen, Y. Liu, Z. Liu, Y. Zhang, Org. Lett. 2018, 20, 5845-5848; j) X. Cong, H. Tang, X. Zeng, J. Am. Chem. Soc. 2015, 137, 14367-14372; k) P. Gao, W. Guo, J. Xue, Y. Zhao, Y. Yuan, Y. Xia, Z. Shi, J. Am. Chem. Soc. 2015, 137, 12231-12240.
    [10] a) K. Shin, S.-W. Park, S. Chang, J. Am. Chem. Soc. 2015, 137, 8584-8592; b) C. Zhu, J. C. A. Oliveira, Z. Shen, H. Huang, L. Ackermann, ACS Catal. 2018, 8, 4402-4407; c) Y. Shi, L. Zhang, J. Lan, M. Zhang, F. Zhou, W. Wei, J. You, Angew. Chem. Int. Ed. 2018, 57, 9108-9112; d) P. K. Samanta, P. Biswas, J. Org. Chem. 2019, 84, 3968-3976; e) Z. Wu, F. Luo, S. Chen, Z. Li, H. Xiang, X. Zhou, Chem. Commun. 2013, 49, 7653-7655; f) Y. Shen, W.-C. Cindy Lee, D. A. Gutierrez, J. J. Li, J. Org. Chem. 2017, 82, 11620-11625; g) M. D. Reddy, A. N. Blanton, E. B. Watkins, J. Org. Chem. 2017, 82, 5080-5095; h) P. Keshri, K. R. Bettadapur, V. Lanke, K. R. Prabhu, J. Org. Chem. 2016, 81, 6056-6065; i) R. K. Chinnagolla, M. Jeganmohan, Org. Lett. 2012, 14, 5246-5249; j) P. Nareddy, F. Jordan, S. E. Brenner-Moyer, M. Szostak, ACS Catal. 2016, 6, 4755-4759; k) P. Nareddy, F. Jordan, M. Szostak, Chem. Sci. 2017, 8, 3204-3210.
    [11] a) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; b) D. Li, N. Xu, Y. Zhang, L. Wang, Chem. Commun. 2014, 50, 14862-14865; c) C. Zhang, Y. Song, Z. Sang, L. Zhan, Y. Rao, J. Org. Chem. 2018, 83, 2582-2591; d) J. Jiang, W.-M. Zhang, J.-J. Dai, J. Xu, H.-J. Xu, J. Org. Chem. 2017, 82, 3622-3630; e) M. Hari Balakrishnan, K. Sathriyan, S. Mannathan, Org. Lett. 2018, 20, 3815-3818.
    [12] a) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532; b) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; c) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; d) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55; e) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362; f) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; g) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; h) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872; i) V. H. Thorat, N. S. Upadhay, M. Murakami, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 284-289.
    [13] a) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; b) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; c) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; d) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
    [14] a) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431; b) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; c) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; d) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; e) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235; f) W. Li, X.-F. Wu, Org. Lett. 2015, 17, 1910-1913.
    [15] a) T. Miura, T. Biyajima, T. Fujii, M. Murakami, J. Am. Chem. Soc. 2012, 134, 194-196; b) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; c) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511; d) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; e) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; f) Y. Funakoshi, T. Miura, M. Murakami, Org. Lett. 2016, 18, 6284-6287; g) D. Yadagiri, A. C. S. Reddy, P. Anbarasan, Chem. Sci. 2016, 7, 5934-5938; h) Y. Jin‐Ming, Z. Cheng‐Zhi, T. Xiang‐Ying, S. Min, Angew. Chem. Int. Ed. 2014, 53, 5142-5146.
    [16] a) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; b) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059; c) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; d) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; e) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551.
    [17] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
    [18] a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-8119; b) W. Lu, J. Chen, M. Liu, J. Ding, W. Gao, H. Wu, Org. Lett. 2011, 13, 6114-6117.
    [19] a) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407; b) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051; c) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047.
    [20] a) R. Shen, C. Dong, J. Yang, L.-B. Han, Adv. Synth. Catal. 2018, 360, 4252-4258; b) Y. Shi, V. Gevorgyan, Chem. Commun. 2015, 51, 17166-17169; c) V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6, 1928-1931; d) A. Joshi, D. Chandra Mohan, S. Adimurthy, Org. Lett. 2016, 18, 464-467; e) Y. Moon, S. Kwon, D. Kang, H. Im, S. Hong, Adv. Synth. Catal. 2016, 358, 958-964; f) A. Joshi, D. C. Mohan, S. Adimurthy, J. Org. Chem. 2016, 81, 9461-9469; g) Y. Hongjian, H. Shengtai, T. Cheng, L. Zhao, W. Chao, C. Bin, L. Yun, Z. Hongbin, Chem. Eur. J. 2017, 23, 12930-12936.
    [21] A. S. Clark, B. Deans, M. F. G. Stevens, M. J. Tisdale, R. T. Wheelhouse, B. J. Denny, J. A. Hartley, J. Med. Chem. 1995, 38, 1493-1504.
    [22] a) R. D. Larsen, A. O. King, C. Y. Chen, E. G. Corley, B. S. Foster, F. E. Roberts, C. Yang, D. R. Lieberman, R. A. Reamer, D. M. Tschaen, T. R. Verhoeven, P. J. Reider, Y. S. Lo, L. T. Rossano, A. S. Brookes, D. Meloni, J. R. Moore, J. F. Arnett, J. Org. Chem. 1994, 59, 6391-6394; b) Y.-J. Ding, Y. Li, S.-Y. Dai, Q. Lan, X.-S. Wang, Org. Biomol. Chem. 2015, 13, 3198-3201; c) M. Seki, M. Nagahama, J. Org. Chem. 2011, 76, 10198-10206; d) S. B. Madasu, N. A. Vekariya, C. Koteswaramma, A. Islam, P. D. Sanasi, R. B. Korupolu, Org. Process Res. Dev. 2012, 16, 2025-2030; e) L. Ackermann, Org. Process Res. Dev. 2015, 19, 260-269; f) A. Jim_nez-Somarribas, R. M. Williams, Tetrahedron 2013, 69, 7505–7512.
    [23] a) B. Satyanarayana, Y. Sumalatha, S. Venkatraman, G. Mahesh Reddy, P. Pratap Reddy, Synth. Commun. 2005, 35, 1979-1982; b) C. V. Kavitha, S. L. Gaonkar, J. N. Narendra Sharath Chandra, C. T. Sadashiva, K. S. Rangappa, Biorg. Med. Chem. 2007, 15, 7391-7398; c) K. M. Rajesh, P. Kyungho, L. Sunwoo, Adv. Synth. Catal. 2010, 352, 3255-3266; d) X. Bao, W. Zhu, W. Yuan, X. Zhu, Y. Yan, H. Tang, Z. Chen, Eur. J. Med. Chem. 2016, 123, 115-127.
    [24] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
    [25] a) J. T. Thatai, C.-H. Cheng, Angew. Chem. Int. Ed. 2007, 46, 5921-5924; b) S. Mannathan, C.-H. Cheng, Chem. Commun. 2013, 49, 1557-1559; c) Y.-C. Hong, P. Gandeepan, S. Mannathan, W.-T. Lee, C.-H. Cheng, Org. Lett. 2014, 16, 2806-2809; d) C.-M. Yang, M. Jeganmohan, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 3610-3613; e) Y. Chun‐Ming, M. Subramaniyan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 12212-12216.
    [26] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    [27] a) Kumar, K. S.; Adepu, R.; Sandra, S.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Misra, P.; Pal, M. Bioorg. Med. Chem. Lett. 2012, 22, 1146; b) G. Wang, X. Chen, Y. Deng, Z. Li, X. Xu, J. Agric. Food. Chem. 2015, 63, 6883.
    Chapter 3
    [1] a) R. T. Hendricks, S. R. Spencer, J. F. Blake, J. B. Fell, J. P. Fischer, P. J. Stengel, V. J. P. Leveque, S. LePogam, S. Rajyaguru, I. Najera, J. A. Josey, S. Swallow, Bioorg. Med. Chem. Lett. 2009, 19, 410-414; b) C. Valente, R. C. Guedes, R. Moreira, J. Iley, J. Gut, P. J. Rosenthal, Bioorg. Med. Chem. Lett. 2006, 16, 4115-4119; c) R. Bihovsky, M. Tao, J. P. Mallamo, G. J. Wells, Bioorg. Med. Chem. Lett. 2004, 14, 1035-1038; d) E. W. Brooke, S. G. Davies, A. W. Mulvaney, M. Okada, F. Pompeo, E. Sim, R. J. Vickers, I. M. Westwood, Bioorg. Med. Chem. Lett. 2003, 13, 2527-2530; e) X. Chen, S. Zhang, Y. Yang, S. Hussain, M. He, D. Gui, B. Ma, C. Jing, Z. Qiao, C. Zhu, Q. Yu, Biorg. Med. Chem. 2011, 19, 7262-7269; f) H. A. Bhatti, M. Khatoon, M. al-Rashida, H. Bano, N. Iqbal, N. Zaib un, S. Yousuf, K. M. Khan, A. Hameed, J. Iqbal, Bioorg. Chem. 2017, 71, 10-18.
    [2] a) M. Zia-ur-Rehman, J. A. Choudary, S. Ahmad, H. L. Siddiqui, Chem. Pharm. Bull. 2006, 54, 1175-1178; b) S. Andrea, O. Takashi, M. Antonio, T. S. Claudiu, Curr. Med. Chem. 2003, 10, 925-953; c) S. Syed Shoaib Ahmad, R. Gildardo, A. Muhammad, Mini-Rev. Med. Chem. 2013, 13, 70-86; d) c. Angela, S. Andrea, M. Antonio, T. S. Claudiu, Curr. Cancer Drug Targets 2002, 2, 55-75.
    [3] a) S. Debnath, S. Mondal, Eur. J. Org. Chem. 2018, 2018, 933-956; b) X. Rabasseda, S. Hopkins, Drugs Today 1994, 30, 557-564; c) T. Wroblewski, A. Graul, J. Castaner, Drugs Future 1998, 23, 365-369; d) J. Drews, Science 2000, 287, 1960; e) P. Sanphui, S. K. Pramanik, N. Chatterjee, P. Moorthi, B. Banerji, S. C. Biswas, PLOS ONE 2013, 8, e78842; f) S. Hanessian, H. Sailes, E. Therrien, Tetrahedron 2003, 59, 7047-7056; g) T. S. Virk, N. V. Ilawe, G. Zhang, C. P. Yu, B. M. Wong, J. M. W. Chan, ACS Omega 2016, 1, 1336-1342.
    [4] a) J. G. Lombardino, E. H. Wiseman, W. M. McLamore, J. Med. Chem. 1971, 14, 1171-1175; b) J. G. Lombardino, E. H. Wiseman, J. Med. Chem. 1972, 15, 848-849; c) C. Nicolas, M. Verny, I. Giraud, M. Ollier, M. Rapp, J.-C. Maurizis, J.-C. Madelmont, J. Med. Chem. 1999, 42, 5235-5240; d) M. Inagaki, T. Tsuri, H. Jyoyama, T. Ono, K. Yamada, M. Kobayashi, Y. Hori, A. Arimura, K. Yasui, K. Ohno, S. Kakudo, K. Koizumi, R. Suzuki, M. Kato, S. Kawai, S. Matsumoto, J. Med. Chem. 2000, 43, 2040-2048; e) G. J. Wells, M. Tao, K. A. Josef, R. Bihovsky, J. Med. Chem. 2001, 44, 3488-3503; f) L. Zhuang, J. S. Wai, M. W. Embrey, T. E. Fisher, M. S. Egbertson, L. S. Payne, J. P. Guare, J. P. Vacca, D. J. Hazuda, P. J. Felock, A. L. Wolfe, K. A. Stillmock, M. V. Witmer, G. Moyer, W. A. Schleif, L. J. Gabryelski, Y. M. Leonard, J. J. Lynch, S. R. Michelson, S. D. Young, J. Med. Chem. 2003, 46, 453-456; g) R. J. Cherney, R. Mo, D. T. Meyer, K. D. Hardman, R.-Q. Liu, M. B. Covington, M. Qian, Z. R. Wasserman, D. D. Christ, J. M. Trzaskos, R. C. Newton, C. P. Decicco, J. Med. Chem. 2004, 47, 2981-2983; h) P. Francotte, P. de Tullio, E. Goffin, G. Dintilhac, E. Graindorge, P. Fraikin, P. Lestage, L. Danober, J.-Y. Thomas, D.-H. Caignard, B. Pirotte, J. Med. Chem. 2007, 50, 3153-3157.
    [5] a) G. Wittig, Naturwissenschaften 1942, 30, 696-703; b) G. Wittig, L. Pohmer, Angew. Chem. 1955, 67, 348-348; c) G. Wittig, E. Knauss, Chem. Ber. 1958, 91, 895-907; d) G. Wittig, R. W. Hoffmann, Chem. Ber. 1962, 95, 2718-2728.
    [6] a) J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291; b) J. D. Roberts, D. A. Semenow, H. E. Simmons, L. A. Carlsmith, J. Am. Chem. Soc. 1956, 78, 601-611.
    [7] a) R. Huisgen, H. Rist, Naturwissenschaften 1954, 41, 358-359; b) R. Huisgen, H. Rist, Justus Liebigs Ann. Chem. 1955, 594, 137-158.
    [8] a) M. Stiles, R. G. Miller, J. Am. Chem. Soc. 1960, 82, 3802-3802; b) M. Stiles, R. G. Miller, U. Burckhardt, J. Am. Chem. Soc. 1963, 85, 1792-1797.
    [9] G. Köbrich, Angew. Chem. Int. Ed. Engl. 1962, 1, 329-329.
    [10] a) L. Friedman, F. M. Logullo, J. Org. Chem. 1969, 34, 3089-3092; b) L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1549-1549.
    [11] a) A. M. Orendt, J. C. Facelli, J. G. Radziszewski, W. J. Horton, D. M. Grant, J. Michl, J. Am. Chem. Soc. 1996, 118, 846-852; b) O. L. Chapman, C. C. Chang, J. Kolc, N. R. Rosenquist, H. Tomioka, J. Am. Chem. Soc. 1975, 97, 6586-6588; c) J. G. Radziszewski, B. A. Hess, R. Zahradnik, J. Am. Chem. Soc. 1992, 114, 52-57; d) R. Warmuth, Angew. Chem. Int. Ed. Engl. 1997, 36, 1347-1350; e) P. G. Wenthold, R. R. Squires, W. C. Lineberger, J. Am. Chem. Soc. 1998, 120, 5279-5290; f) R. Warmuth, Chem. Commun. 1998, 59-60; g) P. Christopher Buxton, M. Fensome, H. Heaney, K. G. Mason, Tetrahedron 1995, 51, 2959-2968.
    [12] a) A. E. Clark, E. R. Davidson, J. Am. Chem. Soc. 2001, 123, 10691-10698; b) J. Cioslowski, P. Piskorz, D. Moncrieff, J. Am. Chem. Soc. 1998, 120, 1695-1700; c) B. R. Beno, Chem. Commun. 1998, 301-302; d) E. Kraka, D. Cremer, J. Am. Chem. Soc. 1994, 116, 4929-4936; e) A. C. Scheiner, H. F. Schaefer, B. Liu, J. Am. Chem. Soc. 1989, 111, 3118-3124; f) S. G. Wierschke, J. J. Nash, R. R. Squires, J. Am. Chem. Soc. 1993, 115, 11958-11967; g) F. C. Gozzo, M. N. Eberlin, J. Org. Chem. 1999, 64, 2188-2193.
    [13] a) C. D. Campbell, C. W. Rees, J. Chem. Soc. (C) 1969, 742-747; b) S. E. Whitney, M. Winters, B. Rickborn, J. Org. Chem. 1990, 55, 929-935; c) C. D. Campbell, C. W. Rees, Chem. Commun. (London) 1965, 192-193; d) S. E. Whitney, B. Rickborn, J. Org. Chem. 1988, 53, 5595-5596.
    [14] T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron Lett. 1991, 32, 6735-6736.
    [15] L. Verbit, J. S. Levy, H. Rabitz, W. Kwalwasser, Tetrahedron Lett. 1966, 7, 1053-1055.
    [16] J. I. G. Cadogan, A. G. Rowley, J. T. Sharp, B. Sledzinski, N. H. Wilson, J. Chem. Soc., Perkin Trans. 1 1975, 1072-1074.
    [17] F. M. Beringer, S. J. Huang, J. Org. Chem. 1964, 29, 445-448.
    [18] a) T. Kitamura, M. Yamane, J. Chem. Soc., Chem. Commun. 1995, 983-984; b) T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679.
    [19] a) P. P. Wickham, K. H. Hazen, H. Guo, G. Jones, K. H. Reuter, W. J. Scott, J. Org. Chem. 1991, 56, 2045-2050; b) P. P. Wickham, K. H. Reuter, D. Senanayake, H. Guo, M. Zalesky, W. J. Scott, Tetrahedron Lett. 1993, 34, 7521-7524.
    [20] S. Kovács, Á. I. Csincsi, T. Z. Nagy, S. Boros, G. Timári, Z. Novák, Org. Lett. 2012, 14, 2022-2025.
    [21] Y. Sumida, T. Kato, T. Hosoya, Org. Lett. 2013, 15, 2806-2809.
    [22] T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730-1733.
    [23] J.-A. García-López, M. F. Greaney, Org. Lett. 2014, 16, 2338-2341.
    [24] H. Yoshio, S. Takaaki, K. Hiroshi, Chem. Lett. 1983, 12, 1211-1214.
    [25] a) M. V. Pham, B. Ye, N. Cramer, Angew. Chem. Int. Ed. 2012, 51, 10610-10614; b) S. Debnath, S. Mondal, J. Org. Chem. 2015, 80, 3940-3948; c) O. Planas, C. J. Whiteoak, A. Company, X. Ribas, Adv. Synth. Catal. 2015, 357, 4003-4012; d) D. Kalsi, B. Sundararaju, Org. Lett. 2015, 17, 6118-6121; e) N. Thrimurtulu, R. Nallagonda, C. M. R. Volla, Chem. Commun. 2017, 53, 1872-1875; f) T. Lan, L. Wang, Y. Rao, Org. Lett. 2017, 19, 972-975; g) W. Xie, J. Yang, B. Wang, B. Li, J. Org. Chem. 2014, 79, 8278-8287; h) B. Maheshwar Rao, J. S. Yadav, B. Sridhar, B. V. Subba Reddy, Org. Biomol. Chem. 2018, 16, 5163-5166; i) D. K. Barange, T. C. Nishad, N. K. Swamy, V. Bandameedi, D. Kumar, B. R. Sreekanth, K. Vyas, M. Pal, J. Org. Chem. 2007, 72, 8547-8550.
    [26] a) C. B. Bheeter, J. K. Bera, H. Doucet, Adv. Synth. Catal. 2012, 354, 3533-3538; b) N. Conde, F. Churruca, R. SanMartin, M. T. Herrero, E. Domínguez, Adv. Synth. Catal. 2015, 357, 1525-1531; c) J. K. Laha, K. P. Jethava, N. Dayal, J. Org. Chem. 2014, 79, 8010-8019; d) S. Rousseaux, S. I. Gorelsky, B. K. W. Chung, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 10692-10705; e) W. D. Guerra, R. A. Rossi, A. B. Pierini, S. M. Barolo, J. Org. Chem. 2016, 81, 4965-4973; f) Y. Li, Q. Ding, G. Qiu, J. Wu, Org. Biomol. Chem. 2014, 12, 149-155; g) C. Martínez, A. E. Bosnidou, S. Allmendinger, K. Muñiz, Chem. Eur. J. 2016, 22, 9929-9932; h) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; i) Y.-Y. Han, H. Wang, S. Yu, Org. Chem. Front. 2016, 3, 953-956; j) S. Feng, S. Li, J. Li, J. Wei, Org. Chem. Front. 2019, 6, 517-522.
    [27] a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301; b) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003-8104; c) G. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404-9432; d) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333-9403; e) K. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302-9332; f) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977-9015; g) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246.
    [28] a) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 10578-10599; b) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; d) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299; e) N. A. Harry, S. Saranya, S. M. Ujwaldev, G. Anilkumar, Catal. Sci. Technol., 2019, 9, 1726-1743; f) E. A. Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015, 48, 1503-1514.
    [29] a) V. P. Ananikov, ACS Catal. 2015, 5, 1964-1971; b) J. E. Dander, N. K. Garg, ACS Catal. 2017, 7, 1413-1423; c) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; d) Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864-8907; e) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-1651; f) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; g) P. Gandeepan, C.-H. Cheng, Acc. Chem. Res. 2015, 48, 1194-1206; h) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; i) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787-8863; j) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; k) J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227; l) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976.
    [30] a) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55; b) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362; c) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; d) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; e) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; f) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532.
    [31] a) E. M. O'Brien, E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2003, 125, 10498-10499; b) Y. Kajita, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2008, 130, 17226-17227; c) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; d) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059; e) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; f) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; g) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551.
    [32] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
    [33] a) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431; b) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; c) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; d) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; e) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; f) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235.
    [34] a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-8119; b) W. Lu, J. Chen, M. Liu, J. Ding, W. Gao, H. Wu, Org. Lett. 2011, 13, 6114-6117.
    [36] a) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; b) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511; c) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; d) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; e) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872.
    [37] a) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; b) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; c) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; d) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
    [38] a) R. Zeng, G. Dong, J. Am. Chem. Soc. 2015, 137, 1408-1411; b) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407; c) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051; d) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047.
    [39] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179-5182; b) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 2002, 124, 5059-5067; c) H. A. Duong, J. Louie, J. Organomet. Chem. 2005, 690, 5098-5104; d) H. A. Duong, J. Louie, Tetrahedron 2006, 62, 7552-7559; e) J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890-3908.
    [40] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
    [41] a) V. H. Thorat, N. S. Upadhyay, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 4784-4789; b) V. H. Thorat, N. S. Upadhyay, M. Murakami, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 284-289.
    [42] a) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Chem. Asian J. 2010, 5, 153-159; b) Z. Liu, R. C. Larock, Org. Lett. 2003, 5, 4673-4675; c) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113; d) Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198-3209; e) D. Qiu, J. He, X. Yue, J. Shi, Y. Li, Org. Lett. 2016, 18, 3130-3133; f) B. Cheng, B. Bao, Y. Chen, N. Wang, Y. Li, R. Wang, H. Zhai, Org. Chem. Front. 2017, 4, 1636-1639; g) T. Yao, B. Ren, B. Wang, Y. Zhao, Org. Lett. 2017, 19, 3135-3138; h) X. Huang, W. Zhao, D.-L. Chen, Y. Zhan, T. Zeng, H. Jin, B. Peng, Chem. Commun. 2019, 55, 2070-2073; i) T. Zheng, J. Tan, R. Fan, S. Su, B. Liu, C. Tan, K. Xu, Chem. Commun. 2018, 54, 1303-1306; j) C.-H. Sun, Y. Lu, Q. Zhang, R. Lu, L.-Q. Bao, M.-H. Shen, H.-D. Xu, Org. Biomol. Chem. 2017, 15, 4058-4063; k) J. Zhang, Z.-X. Chen, T. Du, B. Li, Y. Gu, S.-K. Tian, Org. Lett. 2016, 18, 4872-4875; l) L. Zhou, H. Li, W. Zhang, L. Wang, Chem. Commun. 2018, 54, 4822-4825; m) T. Roy, S. S. Bhojgude, T. Kaicharla, M. Thangaraj, B. Garai, A. T. Biju, Org. Chem. Front. 2016, 3, 71-76; n) D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang, X. She, Org. Lett. 2017, 19, 3600-3603; o) A. Bunescu, C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 10284-10286; p) J. Shin, J. Lee, D. Ko, N. De, E. J. Yoo, Org. Lett. 2017, 19, 2901-2904.
    [43] a) Y. Miura, T. Ohnishi, J. Org. Chem. 1988, 53, 3012-3016; b) M. Yozo, O. Tetsuya, K. Masayoshi, K. Takamasa, Bull. Chem. Soc. Jpn. 1990, 63, 57-63; c) M. Yozo, N. Yuji, Bull. Chem. Soc. Jpn. 1990, 63, 1154-1159; d) W. C. Danen, R. W. Gellert, J. Am. Chem. Soc. 1980, 102, 3264-3265; e) G. Zomer, J. B. F. N. Engberts, Tetrahedron Lett. 1977, 18, 3901-3904; f) M. Yozo, N. Yuji, K. Masayoshi, Bull. Chem. Soc. Jpn. 1978, 51, 947-948; g) M. Yozo, N. Yuji, K. Masayoshi, Chem. Lett. 1978, 7, 521-524; h) J. A. Baban, B. P. Roberts, J. Chem. Soc., Perkin Trans. 2 1978, 678-683; i) R. Sutcliffe, M. Anpo, A. Stolow, K. U. Ingold, J. Am. Chem. Soc. 1982, 104, 6064-6070; j) P. M. Carton, B. C. Gilbert, H. A. Laue, R. O. Norman, R. C. Sealy, J. Chem. Soc., Perkin Trans. 2, 1975, 1245-1249.
    [44] a) A. Rajca, Chem. Rev. 1994, 94, 871-893; b) M. Abe, Chem. Rev. 2013, 113, 7011-7088; c) N. M. Gallagher, A. Olankitwanit, A. Rajca, J. Org. Chem. 2015, 80, 1291-1298; d) I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303-349; e) A. Rajca, Chem. Eur. J. 2002, 8, 4834-4841; f) M. Abe, J. Ye, M. Mishima, Chem. Soc. Rev. 2012, 41, 3808-3820; g) P. P. Power, Chem. Rev. 2003, 103, 789-810; h) R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321-1338.
    [45] a) Y. Miura, H. Asada, M. Kinoshita, K. Ohta, J. Phys. Chem. 1983, 87, 3450-3455; b) T. Koenig, J. A. Hoobler, W. R. Mabey, J. Am. Chem. Soc. 1972, 94, 2514-2515; c) A. Rajca, K. Shiraishi, M. Pink, S. Rajca, J. Am. Chem. Soc. 2007, 129, 7232-7233; d) Y. Miura, A. Yamamoto, Y. Katsura, M. Kinoshita, J. Org. Chem. 1980, 45, 3875-3880; e) Y. Miura, A. Yamamoto, Y. Katsura, M. Kinoshita, S. Sato, C. Tamura, J. Org. Chem. 1982, 47, 2618-2622; f) Y. Miura, T. Ohana, J. Org. Chem. 1988, 53, 5770-5772; g) A. R. Forrester, E. M. Johansson, R. H. Thomson, J. Chem. Soc., Perkin Trans. 1 1979, 1112-1119; h) A. T. Balaban, A. Vasilescu, Tetrahedron Lett. 1972, 13, 571-574.
    [46] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
    [47] A. R. Katritzky, J. W. Rogers, R. M. Witek, A. V. Vakulenko, P. P. Mohapatra, P. J. Steel, R. Damavarapu, J. Energetic Mater. 2007, 25, 79-109.
    [48] a) Y. Sato, T. Tamura, A. Kinbara, M. Mori, Adv. Synth. Catal. 2007, 349, 647- 661; b) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 2002, 1454-1458; c) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827-5828; d) E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280-7286.

    QR CODE