研究生: |
韋杰 THORAT, VIJAYKUMAR-HARIDAS |
---|---|
論文名稱: |
以三嗪化合物與苯炔或硼酸化合物進行脫氮偶合反應合成雜環分子之研究 Denitrogenative Coupling of Triazines with Benzynes and Boronic Acids to Access Heterocycles |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
彭之皓
Peng, Chi-How 蔡易州 Tsai, Yi-Chou 謝仁傑 Hsieh, Jen-Chieh 莊士卿 Chuang, Shih-Ching |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 483 |
中文關鍵詞: | 鎳金屬催化 、苯炔 、硼酸 |
外文關鍵詞: | Nickel Catalysis, Benzyne, Boronic Acid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文主要探討零價鎳金屬催化脫氮偶合反應與無過渡金屬參與之分子內環化反應。內容分成三個章節:第一章敘述鎳金屬催化苯并三嗪酮化合物與苯炔進行脫氮偶合反應合成菲啶酮化合物;第二章則探討鎳金屬催化苯并三嗪酮化合物與硼酸化合物進行脫氮與鄰位官能基化反應;第三章主要講述苯并磺醯基三嗪化合物與苯炔經由鎳金屬催化合成內環磺胺類衍生物,以及無過渡金屬參與之分子內環化反應合成N-芳基內環磺胺類衍生物。
苯并三嗪酮化合物易進行脫去氮氣分子之反應,並與過渡金屬形成穩定之五元環中間體,此中間體可穩定存在且進一步進行偶合反應或官能基化反應。因此,在第一章中,經由零價鎳金屬系統,與苯并三嗪酮化合物與苯炔進行[4+2]脫氮環化反應,合成一系列之N-芳基菲啶酮化合物,具有寬廣的官能基容忍度之優點,亦應用於高效率合成具生物活性之天然物。
延續上一章節的研究,在第二章中使用一系列之硼酸化合物,藉由零價鎳金屬催化與苯并三嗪酮化合物進行鄰位官能基化反應。此反應不僅可合成鄰位芳香基、烷基以及烯基之苯甲醯胺化合物,亦應用於降血壓藥物如氯沙坦(Losartan)與厄貝沙坦(Irbesartan)的合成。
第三章分成二個部分,第一部分主要探討鎳金屬催化苯并磺醯基三嗪化合物,進行脫氮反應形成五元環中間體,再與苯炔反應,高效率合成雙苯并內環磺胺類衍生物。於第二部分中發現,若移除鎳金屬催化劑,苯并磺醯基三嗪化合物會快速進行自身脫氮反應,形成雙自由基的中間體並進一步進行環化反應,合成出雙苯并內環磺胺類化合物;若反應同時加入苯炔,可進一步得到高選擇性之N-芳基取代之雙苯并內環磺胺類化合物,在此部分亦對其反應的選擇性作深入的探討與研究。
ABSTRACT
In this graduate dissertation, Ni(0)catalyzed denitrogenative coupling reactions and transition metal free intramolecular annulation reactions have been discussed. For the better understanding, this dissertation has been divided into three chapters. Chapter 1 deals with Ni(0)catalyzed denitrogenative [4+2] annulation of 1,2,3 benzotriazin-4-(3H)-ones with benzynes to access phenanthridinones, and Chapter 2 highlights Nicatalyzed denitrogenative ortho-arylation of 1,2,3 benzotriazin-4-(3H)-ones with organic boronic acids to synthesize ortho functionalized benzamides. Finally, chapter 3 displays Ni(0)catalyzed denitrogenative [4+2] annulation of 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to access sultam cores and its second part consists of transition metal free two component reaction involving 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to produce N-arylated sultam scaffolds.
Chapter 1 describes a Nicatalyzed denitrogenative [4+2] annulation of 1,2,3 benzotriazin-4-(3H)-ones with benzynes. The 1,2,3 benzotriazin-4-(3H)-ones can easily undergo extrusion of molecular nitrogen and reacts with Ni(cod)2/dppm catalysis system to form five-membered azanickelacycle intermediate, such intermediate reacts with suitable reactive π-component like benzynes to produce structurally diverse class of phenanthridinone analogues in excellent yields with wide functional group tolerance. The present catalysis system can be applied for one pot synthesis of bioactive natural products like N-methylchrinasidine with excellent yield
Chapter 2 elaborates a Nickelcatalyzed denitrogenative ortho-arylation of 1,2,3 benzotriazin-4-(3H)-ones with organic boronic acids. This catalytic reaction proceeds through five-membered azanickelacycle intermediate and transmetalation of boronic acid with suitable fluoride source like CsF. Subsequently protonation followed by reductive elimination to produce a range of ortho-substituted benzamides. The current catalysis system also utilizes styrene and methyl boronic acids as coupling partner. Moreover, this protocol has been successfully applied to synthesize antihypertensive drugs like Losartan and Irbesartan in good yield.
Chapter 3 divided into two sections, first section demonstrates a Nickelcatalyzed denitrogenative [4+2] annulation of 1,2,3,4-benzothiatriazine-1,1-dioxides with benzynes to furnish sultam scaffolds in excellent yields. The current annulation reaction proceeds through five-membered azanickelacycle intermediate, subsequently reacts with reactive π-component like benzynes to form range of sultam analogues.
Second section displays a transition metal free two component reaction involving thermally activated 1,2,3,4-benzothiatriazine-1,1-dioxides and benzynes to produce highly functionalized N-arylated sultam architectures with wide functional group tolerance in excellent yields. The thermal decomposition of 1,2,3,4-benzothiatriazine-1,1-dioxides can generate a diradical intermediate, subsequently undergo intramolecular cyclization to form dibenzosultam. Finally, aryne insertion occurred into dibenzosultam to form N-arylated sultam analogues. Later we studied the swapping effect of arynes in above two component reaction under thermal activation pathway to synthesize dibenzosultam molecules in good yields.
[1] a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301; b) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003-8104; c) G. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404-9432; d) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333-9403; e) K. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302-9332; f) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977-9015; g) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246.
[2] a) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 10578-10599; b) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; d) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299; e) N. A. Harry, S. Saranya, S. M. Ujwaldev, G. Anilkumar, Catal. Sci. Technol., 2019, 9, 1726-1743; f) E. A. Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015, 48, 1503-1514.
[3] a) V. P. Ananikov, ACS Catal. 2015, 5, 1964-1971; b) J. E. Dander, N. K. Garg, ACS Catal. 2017, 7, 1413-1423; c) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; d) Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864-8907; e) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-1651; f) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; g) P. Gandeepan, C.-H. Cheng, Acc. Chem. Res. 2015, 48, 1194-1206; h) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; i) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787-8863; j) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; k) J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227; l) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976.
[4] a) B. D. Krane, M. O. Fagbule, M. Shamma, B. Gözler, J. Nat. Prod. 1984, 47, 1-43; b) I.-S. Chen, S.-J. Wu, I.-L. Tsai, T.-S. Wu, J. M. Pezzuto, M. C. Lu, H. Chai, N. Suh, C.-M. Teng, J. Nat. Prod. 1994, 57, 1206-1211; c) B. D. Krane, M. Shamma, J. Nat. Prod. 1982, 45, 377-384; d) K. W. Bentley, Nat. Prod. Rep. 1992, 9, 365-391; e) Z. Jin, Nat. Prod. Rep. 2009, 26, 363-381; f) J. P. Michael, Nat. Prod. Rep. 1995, 12, 465-475.
[5] a) D. Bellocchi, A. Macchiarulo, G. Costantino, R. Pellicciari, Biorg. Med. Chem. 2005, 13, 1151-1157; b) S. Patil, S. Kamath, T. Sanchez, N. Neamati, R. F. Schinazi, J. K. Buolamwini, Biorg. Med. Chem. 2007, 15, 1212-1228; c) J. Ishida, K. Hattori, H. Yamamoto, A. Iwashita, K. Mihara, N. Matsuoka, Bioorg. Med. Chem. Lett. 2005, 15, 4221-4225; d) E. Perkins, D. Sun, A. Nguyen, S. Tulac, M. Francesco, H. Tavana, H. Nguyen, S. Tugendreich, P. Barthmaier, J. Couto, E. Yeh, S. Thode, K. Jarnagin, A. Jain, D. Morgans, T. Melese, Cancer Res. 2001, 61, 4175-4183.
[6] a) J. Hu, X. Shi, J. Chen, X. Mao, L. Zhu, L. Yu, J. Shi, Food Chem. 2014, 148, 437-444; b) D. Weltin, V. Picard, K. Aupeix, M. Varin, D. Oth, J. Marchal, P. Dufour, P. Bischoff, Int J Immunopharmacol. 1995, 17, 265-271; c) T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, T. Akiyama, H. Abe, Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1 2001, 523-528; d) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792-804; e) A. Aldinucci, G. Gerlini, S. Fossati, G. Cipriani, C. Ballerini, T. Biagioli, N. Pimpinelli, L. Borgognoni, L. Massacesi, F. Moroni, A. Chiarugi, J. Immunol. 2007, 179, 305-312.
[7] a) C. Genès, G. Lenglet, S. Depauw, R. Nhili, S. Prado, M.-H. David-Cordonnier, S. Michel, F. Tillequin, F.-H. Porée, Eur. J. Med. Chem. 2011, 46, 2117-2131; b) A. Riahi, M. Shkoor, O. Fatunsin, M. A. Yawer, I. Hussain, C. Fischer, P. Langer, Tetrahedron 2009, 65, 9300-9315; c) M. A. Yawer, I. Hussain, I. Iqbal, A. Spannenberg, P. Langer, Tetrahedron Lett. 2008, 49, 4467-4469; d) E. C. Horning, V. L. Stromberg, H. A. Lloyd, J. Am. Chem. Soc. 1952, 74, 5153-5155; e) C. C. Woodroofe, B. Zhong, X. Lu, R. B. Silverman, J. Chem. Soc., Perkin Trans. 2, 2000, 55-59; f) B. S. Bhakuni, A. Kumar, S. J. Balkrishna, J. A. Sheikh, S. Konar, S. Kumar, Org. Lett. 2012, 14, 2838-2841; g) T. Cailly, F. Fabis, S. Rault, Tetrahedron 2006, 62, 5862-5867; h) E. Dubost, R. Magnelli, T. Cailly, R. Legay, F. Fabis, S. Rault, Tetrahedron 2010, 66, 5008-5016.
[8] a) L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209-10212; b) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; c) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; d) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952-14955; e) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532; f) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059.
[9] a) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; b) C.-C. Liu, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 3518-3521; c) S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2014, 53, 7324-7327; d) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908-6909; e) T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565-10569; f) N. S. Upadhyay, V. H. Thorat, R. Sato, P. Annamalai, S.-C. Chuang, C.-H. Cheng, Green Chemistry 2017, 19, 3219-3224; g) J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-L. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492-14495.
[10] a) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449-6457; b) L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 6379-6382; c) H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236-3238; d) G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, X. Li, J. Org. Chem. 2010, 75, 7487-7490; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222.
[11] a) D. Liang, W. Yu, N. Nguyen, J. R. Deschamps, G. H. Imler, Y. Li, A. D. MacKerell, C. Jiang, F. Xue, J. Org. Chem. 2017, 82, 3589-3596; b) M. Yuan, L. Chen, J. Wang, S. Chen, K. Wang, Y. Xue, G. Yao, Z. Luo, Y. Zhang, Org. Lett. 2015, 17, 346-349; c) T. Furuta, Y. Kitamura, A. Hashimoto, S. Fujii, K. Tanaka, T. Kan, Org. Lett. 2007, 9, 183-186; d) C. S. Yeung, X. Zhao, N. Borduas, V. M. Dong, Chem. Sci. 2010, 1, 331-336; e) D. Liang, Z. Hu, J. Peng, J. Huang, Q. Zhu, Chem. Commun. 2013, 49, 173-175; f) R. Ferraccioli, D. Carenzi, O. Rombolà, M. Catellani, Org. Lett. 2004, 6, 4759-4762.
[12] a) G.-W. Wang, T.-T. Yuan, D.-D. Li, Angew. Chem. Int. Ed. 2011, 50, 1380-1383; b) J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880-9883; c) J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 12343-12347; d) N. Senthilkumar, K. Parthasarathy, P. Gandeepan, C.-H. Cheng, Chem. Asian J. 2013, 8, 2175-2181; e) X. Li, J. Pan, S. Song, N. Jiao, Chem. Sci. 2016, 7, 5384-5389; f) A. P. Honeycutt, J. M. Hoover, Org. Lett. 2018, 20, 7216-7219.
[13] a) D. P. Curran, A. I. Keller, J. Am. Chem. Soc. 2006, 128, 13706-13707; b) D. Li, N. Xu, Y. Zhang, L. Wang, Chem. Commun. 2014, 50, 14862-14865; c) S. L. Yedage, B. M. Bhanage, J. Org. Chem. 2016, 81, 4103-4111; d) Y. Moon, E. Jang, S. Choi, S. Hong, Org. Lett. 2018, 20, 240-243; e) S. Zhang, L. Li, M. Xue, R. Zhang, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443-3446; f) A. Kehl, V. M. Breising, D. Schollmeyer, S. R. Waldvogel, Chem. Eur. J. 2018, 24, 17230-17233.
[14] a) B. Banerji, S. Chatterjee, K. Chandrasekhar, C. Nayan, S. K. Killi, Eur. J. Org. Chem. 2017, 2017, 5214-5218; b) Y. He, C. Yuan, Z. Jiang, L. Shuai, Q. Xiao, Org. Lett. 2019, 21, 185-189; c) C. Lu, A. V. Dubrovskiy, R. C. Larock, J. Org. Chem. 2012, 77, 8648-8656; d) X. Peng, W. Wang, C. Jiang, D. Sun, Z. Xu, C.-H. Tung, Org. Lett. 2014, 16, 5354-5357; e) S. Pimparkar, M. Jeganmohan, Chem. Commun. 2014, 50, 12116-12119; f) M. Feng, B. Tang, N. Wang, H.-X. Xu, X. Jiang, Angew. Chem. Int. Ed. 2015, 54, 14960-14964; g) M. Feng, B. Tang, H.-X. Xu, X. Jiang, Org. Lett. 2016, 18, 4352-4355; h) T.-Y. Zhang, J.-B. Lin, Q.-Z. Li, J.-C. Kang, J.-L. Pan, S.-H. Hou, C. Chen, S.-Y. Zhang, Org. Lett. 2017, 19, 1764-1767; i) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55.
[15] a) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; b) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; c) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362.
[16] a) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; b) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; c) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
[17] a) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; b) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; c) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; d) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551; e) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407.
[18] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
[19] a) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; b) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; c) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; d) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; e) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235; f) W. Li, X.-F. Wu, Org. Lett. 2015, 17, 1910-1913; g) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431.
[20] a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872; b) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; c) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; d) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; e) R. Zeng, G. Dong, J. Am. Chem. Soc. 2015, 137, 1408-1411; f) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511.
[21] a) Y. Moon, S. Kwon, D. Kang, H. Im, S. Hong, Adv. Synth. Catal. 2016, 358, 958-964; b) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047; c) A. Joshi, D. Chandra Mohan, S. Adimurthy, Org. Lett. 2016, 18, 464-467; d) V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6, 1928-1931; e) Y. Shi, V. Gevorgyan, Chem. Commun. 2015, 51, 17166-17169; f) R. Shen, C. Dong, J. Yang, L.-B. Han, Adv. Synth. Catal. 2018, 360, 4252-4258; g) A. Joshi, D. C. Mohan, S. Adimurthy, J. Org. Chem. 2016, 81, 9461-9469; h) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051.
[22] a) L. Friedman, F. M. Logullo, J. Org. Chem. 1969, 34, 3089-3092; b) J.-A. García-López, M. F. Greaney, Org. Lett. 2014, 16, 2338-2341; c) J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291; d) H. Yoshio, S. Takaaki, K. Hiroshi, Chem. Lett. 1983, 12, 1211-1214; e) L. Verbit, J. S. Levy, H. Rabitz, W. Kwalwasser, Tetrahedron Lett. 1966, 7, 1053-1055; f) Y. Sumida, T. Kato, T. Hosoya, Org. Lett. 2013, 15, 2806-2809; g) T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679; h) S. Kovács, Á. I. Csincsi, T. Z. Nagy, S. Boros, G. Timári, Z. Novák, Org. Lett. 2012, 14, 2022-2025; i) T. Kitamura, M. Yamane, J. Chem. Soc., Chem. Commun. 1995, 983-984; j) T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730-1733; k) L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1549-1549; l) T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron Lett. 1991, 32, 6735-6736.
[23] a) H. Takikawa, A. Nishii, T. Sakai, K. Suzuki, Chem. Soc. Rev. 2018, 47, 8030-8056; b) P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550-3577; c) R. Sanz, Org. Prep. Proced. Int. 2008, 40, 215-291; d) H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502-528; e) J. Shi, Y. Li, Y. Li, Chem. Soc. Rev. 2017, 46, 1707-1719; f) R. Karmakar, D. Lee, Chem. Soc. Rev. 2016, 45, 4459-4470; g) A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191-218; h) F. I. M. Idiris, C. R. Jones, Org. Biomol. Chem. 2017, 15, 9044-9056; i) A. Yoshimura, A. Saito, V. V. Zhdankin, Chem. Eur. J. 2018, 24, 15156-15166; j) D. Pérez, D. Peña, E. Guitián, Eur. J. Org. Chem. 2013, 2013; k) C. Holden , M. F. Greaney, Angew. Chem. Int. Ed. 2014, 53, 5746-5749; l) J.-A. García-López, M. F. Greaney, Chem. Soc. Rev. 2016, 45, 6766-6798; m) A. E. Goetz, T. K. Shah, N. K. Garg, Chem. Commun. 2015, 51, 34-45; n) C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766-3778; o) O. J. Diamond, T. B. Marder, Org. Chem. Front. 2017, 4, 891-910; p) A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140-3152; q) T. Roy, A. T. Biju, Chem. Commun. 2018, 54, 2580-2594; r) S. S. Bhojgude, A. T. Biju, Angew. Chem. Int. Ed. 2012, 51, 1520-1522; s) h. Pellissier, M. Santelli, The Use of Arynes in Organic Synthesis, Vol. 59, 2003; t) H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701-730.
[24] a) X. Yang, G. C. Tsui, Chem. Sci. 2018, 9, 8871-8875; b) H. Tanaka, H. Kuriki, T. Kubo, I. Osaka, H. Yoshida, Chem. Commun. 2019; c) X. Yang, G. C. Tsui, Org. Lett. 2018, 20, 1179-1182; d) Y. Dong, B. Liu, P. Chen, Q. Liu, M. Wang, Angew. Chem. Int. Ed. 2014, 53, 3442-3446; e) M. Pérez-Gómez, J.-A. García-López, Angew. Chem. Int. Ed. 2016, 55, 14389-14393; f) C. Lu, N. A. Markina, R. C. Larock, J. Org. Chem. 2012, 77, 11153-11160; g) H. Yoon, A. Lossouarn, F. Landau, M. Lautens, Org. Lett. 2016, 18, 6324-6327; h) T. Yao, D. He, Org. Lett. 2017, 19, 842-845; i) J.-T. Hu, B. Zheng, Y.-C. Chen, Q. Xiao, Org. Chem. Front. 2018, 5, 2045-2050; j) S. Feng, S. Li, J. Li, J. Wei, Org. Chem. Front. 2019, 6, 517-522; k) Z. Zuo, H. Wang, Y. Diao, Y. Ge, J. Liu, X. Luan, ACS Catal. 2018, 8, 11029-11034; l) S.-L. Niu, J. Hu, K. He, Y.-C. Chen, Q. Xiao, Org. Lett. 2019.
[25] a) S. Bhuvaneswari, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2006, 8, 5581-5584; b) T. T. Jayanth, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2005, 7, 2921-2924; c) K. Parthasarathy, H. Han, C. Prakash, C.-H. Cheng, Chem. Commun. 2012, 48, 6580-6582; d) S. Bhuvaneswari, M. Jeganmohan, M.-C. Yang, C.-H. Cheng, Chem. Commun. 2008, 2158-2160; e) T. T. Jayanth, C.-H. Cheng, Chem. Commun. 2006, 894-896; f) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Angew. Chem. Int. Ed. 2009, 48, 391-394; g) J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2008, 2992-2994; h) J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 2459-2461; i) J.-C. Hsieh, D. K. Rayabarapu, C.-H. Cheng, Chem. Commun. 2004, 532-533; j) T. T. Jayanth, C.-H. Cheng, Angew. Chem. Int. Ed. 2007, 46, 5921-5924; k) T. T. Jayanth, M. Jeganmohan, M.-J. Cheng, S.-Y. Chu, C.-H. Cheng, J. Am. Chem. Soc. 2006, 128, 2232-2233; l) S. Bhuvaneswari, M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2008, 5013-5015; m) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Chem. Asian J. 2010, 5, 153-159; n) M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2006, 2454-2456.
[26] a) X. Huang, W. Zhao, D.-L. Chen, Y. Zhan, T. Zeng, H. Jin, B. Peng, Chem. Commun. 2019, 55, 2070-2073; b) M.-G. Zhou, R.-H. Dai, S.-K. Tian, Chem. Commun. 2018, 54, 6036-6039; c) R. O. Torres-Ochoa, T. Buyck, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 5679-5683; d) F. I. M. Idiris, C. E. Majesté, G. B. Craven, C. R. Jones, Chem. Sci. 2018, 9, 2873-2878; e) E. Yen-Pon, P. A. Champagne, L. Plougastel, S. Gabillet, P. Thuéry, M. Johnson, G. Muller, G. Pieters, F. Taran, K. N. Houk, D. Audisio, J. Am. Chem. Soc. 2019, 141, 1435-1440; f) A. K. Dhiman, R. Kumar, R. Kumar, U. Sharma, J. Org. Chem. 2017, 82, 12307-12317; g) G. S. Ghotekar, A. C. Shaikh, M. Muthukrishnan, J. Org. Chem. 2019, 84, 2269-2276; h) H. Xu, J. He, J. Shi, L. Tan, D. Qiu, X. Luo, Y. Li, J. Am. Chem. Soc. 2018, 140, 3555-3559; i) H. Hazarika, K. Neog, A. Sharma, B. Das, P. Gogoi, J. Org. Chem. 2019, 84, 5846-5854.
[27] a) L. Zhou, H. Li, W. Zhang, L. Wang, Chem. Commun. 2018, 54, 4822-4825; b) R. Fan, B. Liu, T. Zheng, K. Xu, C. Tan, T. Zeng, S. Su, J. Tan, Chem. Commun. 2018, 54, 7081-7084; c) A. S. Kumar, G. Thirupathi, G. S. Reddy, D. B. Ramachary, Chem. Eur. J. 2019, 25, 1177-1183; d) S.-E. Suh, S. Chen, K. N. Houk, D. M. Chenoweth, Chem. Sci. 2018, 9, 7688-7693; e) M. Mesgar, J. Nguyen-Le, O. Daugulis, J. Am. Chem. Soc. 2018, 140, 13703-13710; f) W.-M. Shu, S. Liu, J.-X. He, S. Wang, A.-X. Wu, J. Org. Chem. 2018, 83, 9156-9165; g) L. Cui, G. Zhu, S. Liu, X. Zhao, J. Qu, B. Wang, J. Org. Chem. 2018, 83, 5044-5051.
[28] a) S. Su, J. Li, M. Sun, H. Zhao, Y. Chen, J. Li, Chem. Commun. 2018, 54, 9611-9614; b) S. Dubbu, Y. D. Vankar, Eur. J. Org. Chem. 2018, 2018, 5060-5064; c) J. Shi, H. Xu, D. Qiu, J. He, Y. Li, J. Am. Chem. Soc. 2017, 139, 623-626; d) Y. Li, D. Qiu, R. Gu, J. Wang, J. Shi, Y. Li, J. Am. Chem. Soc. 2016, 138, 10814-10817; e) W. Xiong, C. Qi, R. Cheng, H. Zhang, L. Wang, D. Yan, H. Jiang, Chem. Commun. 2018, 54, 5835-5838; f) G. Chen, M. Hu, Y. Peng, J. Org. Chem. 2018, 83, 1591-1597; g) H. Jia, Z. Guo, H. Liu, B. Mao, X. Shi, H. Guo, Chem. Commun. 2018, 54, 7050-7053; h) H. Ryu, J. Seo, H. M. Ko, J. Org. Chem. 2018, 83, 14102-14109; i) A. Shamsabadi, V. Chudasama, Chem. Commun. 2018, 54, 11180-11183.
[29] a) G. Min, J. Seo, H. M. Ko, J. Org. Chem. 2018, 83, 8417-8425; b) A. Sharma, P. Gogoi, Org. Biomol. Chem. 2019, 17, 333-346; c) W. Hu, C. Zhang, J. Huang, Y. Guo, Z. Fu, W. Huang, Org. Lett. 2019, 21, 941-945; d) J. Tan, B. Liu, S. Su, Org. Chem. Front. 2018, 5, 3093-3097; e) P. Gouthami, L. N. Chavan, R. Chegondi, S. Chandrasekhar, J. Org. Chem. 2018, 83, 3325-3332; f) X. Pan, Y. Ma, Z. Liu, Org. Biomol. Chem. 2018, 16, 7393-7399; g) H. Jiang, Y. Zhang, W. Xiong, J. Cen, L. Wang, R. Cheng, C. Qi, W. Wu, Org. Lett. 2019, 21, 345-349; h) B. Li, S. Mai, Q. Song, Org. Chem. Front. 2018, 5, 1639-1642.
[30] a) X. Pan, Z. Liu, Org. Chem. Front. 2018, 5, 1798-1810; b) J. Kwon, B. M. Kim, Org. Lett. 2019, 21, 428-433; c) S.-J. Li, Y. Wang, J.-K. Xu, D. Xie, S.-K. Tian, Z.-X. Yu, Org. Lett. 2018, 20, 4545-4548; d) N. S. V. M. Rao Mangina, R. Guduru, G. V. Karunakar, Org. Biomol. Chem. 2018, 16, 2134-2142; e) Y. Addepalli, Z. Yu, J. Ji, C. Zou, Z. Wang, Y. He, Org. Biomol. Chem. 2018, 16, 6077-6085; f) G.-J. Mei, S.-L. Xu, W.-Q. Zheng, C.-Y. Bian, F. Shi, J. Org. Chem. 2018, 83, 1414-1421; g) C. E. Hendrick, Q. Wang, J. Org. Chem. 2015, 80, 1059-1069; h) K. Neog, B. Das, P. Gogoi, Org. Biomol. Chem. 2018, 16, 3138-3150; i) D. Tejedor, A. Díaz-Díaz, R. Diana-Rivero, S. Delgado-Hernández, F. García-Tellado, Org. Lett. 2018, 20, 7987-7990; j) P. Garg, A. Singh, Org. Lett. 2018, 20, 1320-1323.
[31] a) B. Cheng, B. Bao, Y. Chen, N. Wang, Y. Li, R. Wang, H. Zhai, Org. Chem. Front. 2017, 4, 1636-1639; b) B. Kalvacherla, S. Batthula, S. Balasubramanian, R. K. Palakodety, Org. Lett. 2018, 20, 3824-3828; c) R. Singh, K. Nagesh, D. Yugandhar, A. V. G. Prasanthi, Org. Lett. 2018, 20, 4848-4853; d) M. Serafini, A. Griglio, S. Viarengo, S. Aprile, T. Pirali, Org. Biomol. Chem. 2017, 15, 6604-6612; e) N. Hussain, K. Jana, B. Ganguly, D. Mukherjee, Org. Lett. 2018, 20, 1572-1575; f) X.-P. Ma, L.-G. Li, H.-P. Zhao, M. Du, C. Liang, D.-L. Mo, Org. Lett. 2018, 20, 4571-4574; g) Y. Okugawa, Y. Hayashi, S. Kawauchi, K. Hirano, M. Miura, Org. Lett. 2018, 20, 3670-3673; h) L. Zhang, X. Li, Y. Sun, W. Zhao, F. Luo, X. Huang, L. Lin, Y. Yang, B. Peng, Org. Biomol. Chem. 2017, 15, 7181-7189; i) C. Lv, C. Wan, S. Liu, Y. Lan, Y. Li, Org. Lett. 2018, 20, 1919-1923; j) Z. Wang, Y. Addepalli, Y. He, Org. Lett. 2018, 20, 644-647; k) M. Wang, Z. Huang, Org. Biomol. Chem. 2016, 14, 10185-10188; l) A. G. Talero, B. S. Martins, A. C. B. Burtoloso, Org. Lett. 2018, 20, 7206-7211; m) D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang, X. She, Org. Lett. 2017, 19, 3600-3603; n) X. Li, Y. Sun, X. Huang, L. Zhang, L. Kong, B. Peng, Org. Lett. 2017, 19, 838-841; o) R. Samineni, J. Madapa, P. Srihari, G. Mehta, Org. Lett. 2017, 19, 3119-3122; p) P. Trinchera, W. Sun, J. E. Smith, D. Palomas, R. Crespo-Otero, C. R. Jones, Org. Lett. 2017, 19, 4644-4647; q) R. Samineni, C. R. C. Bandi, P. Srihari, G. Mehta, Org. Lett. 2016, 18, 6184-6187.
[32] a) R. N. Gaykar, S. Bhattacharjee, A. T. Biju, Org. Lett. 2019, 21, 737-740; b) S. Bhattacharjee, A. Guin, R. N. Gaykar, A. T. Biju, Org. Lett. 2019; c) T. Roy, R. N. Gaykar, S. Bhattacharjee, A. T. Biju, Chem. Commun. 2019, 55, 3004-3007; d) T. Roy, M. Thangaraj, R. G. Gonnade, A. T. Biju, Chem. Commun. 2016, 52, 9044-9047; e) T. Roy, S. S. Bhojgude, T. Kaicharla, M. Thangaraj, B. Garai, A. T. Biju, Org. Chem. Front. 2016, 3, 71-76; f) A. Bhunia, T. Kaicharla, D. Porwal, R. G. Gonnade, A. T. Biju, Chem. Commun. 2014, 50, 11389-11392; g) M. Thangaraj, S. S. Bhojgude, M. V. Mane, A. T. Biju, Chem. Commun. 2016, 52, 1665-1668; h) R. N. Gaykar, A. Bhunia, A. T. Biju, J. Org. Chem. 2018, 83, 11333-11340; i) T. Roy, M. Thangaraj, T. Kaicharla, R. V. Kamath, R. G. Gonnade, A. T. Biju, Org. Lett. 2016, 18, 5428-5431; j) M. Thangaraj, R. N. Gaykar, T. Roy, A. T. Biju, J. Org. Chem. 2017, 82, 4470-4476; k) S. S. Bhojgude, T. Roy, R. G. Gonnade, A. T. Biju, Org. Lett. 2016, 18, 5424-5427; l) M. Thangaraj, S. S. Bhojgude, S. Jain, R. G. Gonnade, A. T. Biju, J. Org. Chem. 2016, 81, 8604-8611; m) T. Roy, D. R. Baviskar, A. T. Biju, J. Org. Chem. 2015, 80, 11131-11137; n) S. S. Bhojgude, D. R. Baviskar, R. G. Gonnade, A. T. Biju, Org. Lett. 2015, 17, 6270-6273; o) M. Thangaraj, S. S. Bhojgude, R. H. Bisht, R. G. Gonnade, A. T. Biju, J. Org. Chem. 2014, 79, 4757-4762; p) T. Kaicharla, M. Thangaraj, A. T. Biju, Org. Lett. 2014, 16, 1728-1731; q) S. S. Bhojgude, M. Thangaraj, E. Suresh, A. T. Biju, Org. Lett. 2014, 16, 3576-3579; r) A. Bhunia, T. Roy, R. G. Gonnade, A. T. Biju, Org. Lett. 2014, 16, 5132-5135.
[33] a) M. M. Ahire, R. Khan, S. B. Mhaske, Org. Lett. 2017, 19, 2134-2137; b) R. A. Dhokale, S. B. Mhaske, J. Org. Chem. 2017, 82, 4875-4882; c) M. M. Ahire, M. B. Thoke, S. B. Mhaske, Org. Lett. 2018, 20, 848-851; d) V. G. Pandya, S. B. Mhaske, Org. Lett. 2018, 20, 1483-1486; e) V. G. Pandya, S. B. Mhaske, Org. Lett. 2014, 16, 3836-3839; f) R. A. Dhokale, P. R. Thakare, S. B. Mhaske, Org. Lett. 2012, 14, 3994-3997.
[34] a) S. Chakrabarty, I. Chatterjee, L. Tebben, A. Studer, Angew. Chem. Int. Ed. 2013, 52, 2968-2971; b) F. Sha, X. Huang, Angew. Chem. Int. Ed. 2009, 48, 3458-3461; c) E. Yoshioka, S. Kohtani, H. Miyabe, Angew. Chem. Int. Ed. 2011, 50, 6638-6642; d) T. Pirali, F. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, Angew. Chem. Int. Ed. 2012, 51, 1006-1009; e) K. M. Allan, C. D. Gilmore, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 4488-4491; f) A. A. Cant, G. H. V. Bertrand, J. L. Henderson, L. Roberts, M. F. Greaney, Angew. Chem. Int. Ed. 2009, 48, 5199-5202; g) W.-J. Yoo, T. V. Q. Nguyen, S. Kobayashi, Angew. Chem. Int. Ed. 2014, 53, 10213-10217; h) E. Yoshioka, H. Tanaka, S. Kohtani, H. Miyabe, Org. Lett. 2013, 15, 3938-3941; i) H. Yoshida, T. Morishita, H. Fukushima, J. Ohshita, A. Kunai, Org. Lett. 2007, 9, 3367-3370; j) T. Morishita, H. Fukushima, H. Yoshida, J. Ohshita, A. Kunai, J. Org. Chem. 2008, 73, 5452-5457; k) H. Yoshida, M. Watanabe, H. Fukushima, J. Ohshita, A. Kunai, Org. Lett. 2004, 6, 4049-4051; l) H. Yoshida, T. Minabe, J. Ohshita, A. Kunai, Chem. Commun. 2005, 3454-3456; m) H. Yoshida, Y. Mimura, J. Ohshita, A. Kunai, Chem. Commun. 2007, 2405-2407; n) H. Yoshida, T. Morishita, J. Ohshita, Org. Lett. 2008, 10, 3845-3847; o) H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, Angew. Chem. Int. Ed. 2004, 43, 3935-3938; p) A. Bunescu, C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 10284-10286; q) J. B. Feltenberger, R. Hayashi, Y. Tang, E. S. C. Babiash, R. P. Hsung, Org. Lett. 2009, 11, 3666-3669.
[35] a) J.-A. García-López, M. Çetin, M. F. Greaney, Angew. Chem. Int. Ed. 2015, 54, 2156-2159; b) C. M. Holden, S. M. A. Sohel, M. F. Greaney, Angew. Chem. Int. Ed. 2016, 55, 2450-2453; c) A. A. Cant, L. Roberts, M. F. Greaney, Chem. Commun. 2010, 46, 8671-8673; d) J. L. Henderson, A. S. Edwards, M. F. Greaney, Org. Lett. 2007, 9, 5589-5592; e) C. Hall, J. L. Henderson, G. Ernouf, M. F. Greaney, Chem. Commun. 2013, 49, 7602-7604; f) D. G. Pintori, M. F. Greaney, Org. Lett. 2010, 12, 168-171; g) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, Org. Lett. 2011, 13, 3667-3669; h) K. Biswas, M. F. Greaney, Org. Lett. 2011, 13, 4946-4949.
[36] a) A. V. Dubrovskiy, P. Jain, F. Shi, G. H. Lushington, C. Santini, P. Porubsky, R. C. Larock, ACS Comb. Sci. 2013, 15, 193-201; b) Y. Fang, D. C. Rogness, R. C. Larock, F. Shi, J. Org. Chem. 2012, 77, 6262-6270; c) D. C. Rogness, N. A. Markina, J. P. Waldo, R. C. Larock, J. Org. Chem. 2012, 77, 2743-2755; d) P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, Org. Lett. 2011, 13, 3340-3343; e) C. Wu, Y. Fang, R. C. Larock, F. Shi, Org. Lett. 2010, 12, 2234-2237; f) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113; g) R. V. Rozhkov, R. C. Larock, J. Org. Chem. 2010, 75, 4131-4134; h) A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2010, 12, 3117-3119; i) A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2010, 12, 1180-1183; j) Z. Liu, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 15716-15717; k) S. A. Worlikar, R. C. Larock, Org. Lett. 2009, 11, 2413-2416; l) D. C. Rogness, R. C. Larock, J. Org. Chem. 2010, 75, 2289-2295; m) J. Zhao, P. Li, C. Wu, H. Chen, W. Ai, R. Sun, H. Ren, R. C. Larock, F. Shi, Org. Biomol. Chem. 2012, 10, 1922-1930; n) J. Zhao, R. C. Larock, Org. Lett. 2005, 7, 4273-4275; o) A. Kivrak, R. C. Larock, J. Org. Chem. 2010, 75, 7381-7387; p) X. Zhang, R. C. Larock, Org. Lett. 2005, 7, 3973-3976; q) S. A. Worlikar, R. C. Larock, J. Org. Chem. 2009, 74, 9132-9139; r) N. A. Markina, A. V. Dubrovskiy, R. C. Larock, Org. Biomol. Chem. 2012, 10, 2409-2412.
[37] a) A. S. Clark, B. Deans, M. F. G. Stevens, M. J. Tisdale, R. T. Wheelhouse, B. J. Denny, J. A. Hartley, J. Med. Chem. 1995, 38, 1493-1504; b) K. Shiva Kumar, R. Adepu, S. Sandra, D. Rambabu, G. Rama Krishna, C. Malla Reddy, P. Misra, M. Pal, Bioorg. Med. Chem. Lett. 2012, 22, 1146-1150; c) G. Wang, X. Chen, Y. Deng, Z. Li, X. Xu, J. Agric. Food. Chem. 2015, 63, 6883-6889; d) M. L. d. C. Barbosa, L. M. Lima, R. Tesch, C. M. R. Sant'Anna, F. Totzke, M. H. G. Kubbutat, C. Schächtele, S. A. Laufer, E. J. Barreiro, Eur. J. Med. Chem. 2014, 71, 1-14.
[38] a) R. Suau, A. I. Gómez, R. Rico, Phytochemistry 1990, 29, 1710-1712; b) G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett. 2005, 7, 1943-1946; c) Z. Chen, X. Wang, Org. Biomol. Chem. 2017, 15, 5790-5796; d) R. Sanz, Y. Fernández, M. P. Castroviejo, A. Pérez, F. J. Fañanás, Eur. J. Org. Chem. 2007, 2007, 62-69; e) W. Shen, J. Li, C. Zhang, M. Shi, J. Zhang, Chem. Asian J. 2016, 11, 1883-1886; f) R. Shi, H. Niu, L. Lu, A. Lei, Chem. Commun. 2017, 53, 1908-1911; g) T.-T. Fan-Chiang, H.-K. Wang, J.-C. Hsieh, Tetrahedron 2016, 72, 5640-5645; h) R. P. Korivi, C.-H. Cheng, Chem. Eur. J. 2010, 16, 282-287.
[39] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179-5182; b) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 2002, 124, 5059-5067; c) H. A. Duong, J. Louie, J. Organomet. Chem. 2005, 690, 5098-5104; d) H. A. Duong, J. Louie, Tetrahedron 2006, 62, 7552-7559; e) J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890-3908.
[40] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
[41] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
[42] a) Y. Sato, T. Tamura, A. Kinbara, M. Mori, Adv. Synth. Catal. 2007, 349, 647- 661; b) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 2002, 1454-1458; c) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827-5828; d) E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280-7286.
Chapter-2
[1] a) A. F. Fliri, W. T. Loging, R. A. Volkmann, J. Med. Chem. 2009, 52, 8038-8046; b) R. R. Wexler, W. J. Greenlee, J. D. Irvin, M. R. Goldberg, K. Prendergast, R. D. Smith, P. B. M. W. M. Timmermans, J. Med. Chem. 1996, 39, 625-656; c) C. A. Bernhart, P. M. Perreaut, B. P. Ferrari, Y. A. Muneaux, J. L. A. Assens, J. Clement, F. Haudricourt, C. F. Muneaux, J. E. Taillades, M.-A. Vignal, J. Gougat, P. R. Guiraudou, C. A. Lacour, A. Roccon, C. F. Cazaubon, J.-C. Breliere, G. Le Fur, D. Nisato, J. Med. Chem. 1993, 36, 3371-3380; d) K. Kubo, Y. Kohara, Y. Yoshimura, Y. Inada, Y. Shibouta, Y. Furukawa, T. Kato, K. Nishikawa, T. Naka, J. Med. Chem. 1993, 36, 2343-2349; e) J. V. Duncia, A. T. Chiu, D. J. Carini, G. B. Gregory, A. L. Johnson, W. A. Price, G. J. Wells, P. C. Wong, J. C. Calabrese, P. B. M. W. M. Timmermans, J. Med. Chem. 1990, 33, 1312-1329; f) L. L. Chang, W. T. Ashton, K. L. Flanagan, T.-B. Chen, S. S. O'Malley, G. J. Zingaro, S. D. Kivlighn, P. K. S. Siegl, V. J. Lotti, J. Med. Chem. 1995, 38, 3741-3758; g) D. J. Carini, J. V. Duncia, P. E. Aldrich, A. T. Chiu, A. L. Johnson, M. E. Pierce, W. A. Price, J. B. Santella, G. J. Wells, J. Med. Chem. 1991, 34, 2525-2547.
[2] a) P. Bühlmayer, P. Furet, L. Criscione, M. de Gasparo, S. Whitebread, T. Schmidlin, R. Lattmann, J. Wood, Bioorg. Med. Chem. Lett. 1994, 4, 29-34; b) J. H. Kim, J. H. Lee, S. H. Paik, J. H. Kim, Y. H. Chi, Arch. Pharmacal Res. 2012, 35, 1123-1126; c) J. N. Cohn, G. Tognoni, R. D. Glazer, D. Spormann, A. Hester, J. Card. Fail. 1999, 5, 155-160; d) J. N. Cohn, G. Tognoni, Engl. J. Med. 2001, 345, 1667-1675.
[3] a) D. J. Carini, R. J. Ardecky, C. L. Ensinger, J. R. Pruitt, R. R. Wexler, P. C. Wong, S.-M. Huang, B. J. Aungst, P. B. M. W. M. Timmermans, Bioorg. Med. Chem. Lett. 1994, 4, 63-68; b) W. Wienen, N. Hauel, J. C. Van Meel, B. Narr, U. Ries, M. Entzeroth, Br. J. Pharmacol. 1993, 110, 245-252; c) P. Davies, R. Katzman, R. D. Terry, Nature 1980, 288, 279-280; d) G. A. MacGregor, N. D. Markandu, J. E. Roulston, J. C. Jones, J. J. Morton, Nature 1981, 291, 329-331; e) M. Ondetti, B. Rubin, D. Cushman, Science 1977, 196, 441-444; f) J. P. Habashi, D. P. Judge, T. M. Holm, R. D. Cohn, B. L. Loeys, T. K. Cooper, L. Myers, E. C. Klein, G. Liu, C. Calvi, M. Podowski, E. R. Neptune, M. K. Halushka, D. Bedja, K. Gabrielson, D. B. Rifkin, L. Carta, F. Ramirez, D. L. Huso, H. C. Dietz, Science 2006, 312, 117-121.
[4] a) M. B. Vallotton, Trends Pharmacol. Sci. 1987, 8, 69-74; b) A. R. De Caterina, A. R. Harper, F. Cuculi, Vasc. Health. Risk. Manag. 2012, 8, 299-305; c) J. Martin, H. Krum, Pharmacol. Res. 2002, 46, 203-212; d) J. V. Duncia, D. J. Carini, A. T. Chiu, A. L. Johnson, W. A. Price, P. C. Wong, R. R. Wexler, P. B. M. W. M. Timmermans, Med. Res. Rev. 1992, 12, 149-191; e) N. R. Poulter, D. Prabhakaran, M. Caulfield, Lancet 2015, 386, 801-812; f) P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, J. He, Lancet 2005, 365, 217-223; g) M.-H. Xie, F.-Y. Liu, P. C. Wong, P. B. M. W. M. Timmermans, M. G. Cogan, Kidney Intl. 1990, 38, 473-479; h) R. L. Soffer, I. Sen, J. Cardiovasc. Pharmacol. 1985, 7, S69-S72; i) K. F. Hilgers, J. F. E. Mann, J. Am. Soc. Nephrol. 2002, 13, 1100-1108; j) R. J. Cody, Drugs 1994, 47, 586-598; k) R. T. Tsuyuki, M. A. McDonald, Circulation 2006, 114, 855-860; l) B. F. Uretsky, T. Generalovich, P. S. Reddy, R. B. Spangenberg, W. P. Follansbee, Circulation 1983, 67, 823-828.
[5] a) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074-1086; b) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788-802; c) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; d) I. Hussain, T. Singh, Adv. Synth. Catal. 2014, 356, 1661-1696; e) G. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384-5427; f) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; g) Y. Segawa, T. Maekawa, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66-81; h) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-5115; i) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726-11743.
[6] a) R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461-1473; b) F. Shibahara, T. Murai, Asian J. Org. Chem. 2013, 2, 624-636; c) L. C. M. Castro, N. Chatani, Chem. Lett. 2015, 44, 410-421; d) D. Zhao, J. You, C. Hu, Chem. Eur. J. 2011, 17, 5466-5492; e) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238; f) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; g) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169; h) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492; i) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780-1824; j) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; k) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918.
[7] a) I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173-1193; b) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902-4911; c) J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013, 2013, 19-30; d) L. Ackermann, J. Org. Chem. 2014, 79, 8948-8954; e) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369; f) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; g) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295; h) W.-H. Rao, B.-F. Shi, Org. Chem. Front. 2016, 3, 1028-1047; i) W. Ma, P. Gandeepan, J. Li, L. Ackermann, Org. Chem. Front. 2017, 4, 1435-1467; j) S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479; k) R. Giri, S. Thapa, A. Kafle, Adv. Synth. Catal. 2014, 356, 1395-1411.
[8] a) S. Oi, S. Fukita, Y. Inoue, Chem. Commun. 1998, 2439-2440; b) S. Yang, B. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 6066-6067; c) Z. Hai, X. Yun‐He, C. Wan‐Jun, L. Teck‐Peng, Angew. Chem. Int. Ed. 2009, 48, 5355-5357; d) M.-Z. Lu, P. Lu, Y.-H. Xu, T.-P. Loh, Org. Lett. 2014, 16, 2614-2617; e) F. Kakiuchi, S. Kan, K. Igi, N. Chatani, S. Murai, J. Am. Chem. Soc. 2003, 125, 1698-1699; f) J. He, R. Takise, H. Fu, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 4618-4621; g) M. Shang, S.-Z. Sun, H.-X. Dai, J.-Q. Yu, Org. Lett. 2014, 16, 5666-5669; h) X. Chen, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 12634-12635; i) C. S. Yeung, X. Zhao, N. Borduas, V. M. Dong, Chem. Sci. 2010, 1, 331-336; j) B. Liu, Z.-Z. Zhang, X. Li, B.-F. Shi, Org. Chem. Front. 2016, 3, 897-900; k) S. Zhao, B. Liu, B.-B. Zhan, W.-D. Zhang, B.-F. Shi, Org. Lett. 2016, 18, 4586-4589.
[9] a) L. Jie, A. Lutz, Chem. Eur. J. 2015, 21, 5718-5722; b) G. Qingwen, C. Xiang, H. Liang, W. Dadian, L. Jidan, T. Ze, Adv. Synth. Catal. 2016, 358, 509-514; c) Y. Aihara, N. Chatani, Chem. Sci. 2013, 4, 664-670; d) A. Yokota, Y. Aihara, N. Chatani, J. Org. Chem. 2014, 79, 11922-11932; e) A. P. Honeycutt, J. M. Hoover, ACS Catal. 2017, 7, 4597-4601; f) P. Li, G.-W. Wang, H. Chen, L. Wang, Org. Biomol. Chem. 2018, 16, 8783-8790; g) C. Du, P.-X. Li, X. Zhu, J.-F. Suo, J.-L. Niu, M.-P. Song, Angew. Chem. Int. Ed. 2016, 55, 13571-13575; h) Q. Bu, E. Gońka, K. Kuciński, L. Ackermann, Chem. Eur. J. 2019, 25, 2213-2216; i) N. Lv, Z. Chen, Y. Liu, Z. Liu, Y. Zhang, Org. Lett. 2018, 20, 5845-5848; j) X. Cong, H. Tang, X. Zeng, J. Am. Chem. Soc. 2015, 137, 14367-14372; k) P. Gao, W. Guo, J. Xue, Y. Zhao, Y. Yuan, Y. Xia, Z. Shi, J. Am. Chem. Soc. 2015, 137, 12231-12240.
[10] a) K. Shin, S.-W. Park, S. Chang, J. Am. Chem. Soc. 2015, 137, 8584-8592; b) C. Zhu, J. C. A. Oliveira, Z. Shen, H. Huang, L. Ackermann, ACS Catal. 2018, 8, 4402-4407; c) Y. Shi, L. Zhang, J. Lan, M. Zhang, F. Zhou, W. Wei, J. You, Angew. Chem. Int. Ed. 2018, 57, 9108-9112; d) P. K. Samanta, P. Biswas, J. Org. Chem. 2019, 84, 3968-3976; e) Z. Wu, F. Luo, S. Chen, Z. Li, H. Xiang, X. Zhou, Chem. Commun. 2013, 49, 7653-7655; f) Y. Shen, W.-C. Cindy Lee, D. A. Gutierrez, J. J. Li, J. Org. Chem. 2017, 82, 11620-11625; g) M. D. Reddy, A. N. Blanton, E. B. Watkins, J. Org. Chem. 2017, 82, 5080-5095; h) P. Keshri, K. R. Bettadapur, V. Lanke, K. R. Prabhu, J. Org. Chem. 2016, 81, 6056-6065; i) R. K. Chinnagolla, M. Jeganmohan, Org. Lett. 2012, 14, 5246-5249; j) P. Nareddy, F. Jordan, S. E. Brenner-Moyer, M. Szostak, ACS Catal. 2016, 6, 4755-4759; k) P. Nareddy, F. Jordan, M. Szostak, Chem. Sci. 2017, 8, 3204-3210.
[11] a) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; b) D. Li, N. Xu, Y. Zhang, L. Wang, Chem. Commun. 2014, 50, 14862-14865; c) C. Zhang, Y. Song, Z. Sang, L. Zhan, Y. Rao, J. Org. Chem. 2018, 83, 2582-2591; d) J. Jiang, W.-M. Zhang, J.-J. Dai, J. Xu, H.-J. Xu, J. Org. Chem. 2017, 82, 3622-3630; e) M. Hari Balakrishnan, K. Sathriyan, S. Mannathan, Org. Lett. 2018, 20, 3815-3818.
[12] a) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532; b) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; c) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; d) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55; e) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362; f) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; g) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; h) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872; i) V. H. Thorat, N. S. Upadhay, M. Murakami, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 284-289.
[13] a) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; b) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; c) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; d) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
[14] a) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431; b) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; c) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; d) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; e) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235; f) W. Li, X.-F. Wu, Org. Lett. 2015, 17, 1910-1913.
[15] a) T. Miura, T. Biyajima, T. Fujii, M. Murakami, J. Am. Chem. Soc. 2012, 134, 194-196; b) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; c) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511; d) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; e) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; f) Y. Funakoshi, T. Miura, M. Murakami, Org. Lett. 2016, 18, 6284-6287; g) D. Yadagiri, A. C. S. Reddy, P. Anbarasan, Chem. Sci. 2016, 7, 5934-5938; h) Y. Jin‐Ming, Z. Cheng‐Zhi, T. Xiang‐Ying, S. Min, Angew. Chem. Int. Ed. 2014, 53, 5142-5146.
[16] a) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; b) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059; c) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; d) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; e) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551.
[17] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
[18] a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-8119; b) W. Lu, J. Chen, M. Liu, J. Ding, W. Gao, H. Wu, Org. Lett. 2011, 13, 6114-6117.
[19] a) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407; b) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051; c) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047.
[20] a) R. Shen, C. Dong, J. Yang, L.-B. Han, Adv. Synth. Catal. 2018, 360, 4252-4258; b) Y. Shi, V. Gevorgyan, Chem. Commun. 2015, 51, 17166-17169; c) V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6, 1928-1931; d) A. Joshi, D. Chandra Mohan, S. Adimurthy, Org. Lett. 2016, 18, 464-467; e) Y. Moon, S. Kwon, D. Kang, H. Im, S. Hong, Adv. Synth. Catal. 2016, 358, 958-964; f) A. Joshi, D. C. Mohan, S. Adimurthy, J. Org. Chem. 2016, 81, 9461-9469; g) Y. Hongjian, H. Shengtai, T. Cheng, L. Zhao, W. Chao, C. Bin, L. Yun, Z. Hongbin, Chem. Eur. J. 2017, 23, 12930-12936.
[21] A. S. Clark, B. Deans, M. F. G. Stevens, M. J. Tisdale, R. T. Wheelhouse, B. J. Denny, J. A. Hartley, J. Med. Chem. 1995, 38, 1493-1504.
[22] a) R. D. Larsen, A. O. King, C. Y. Chen, E. G. Corley, B. S. Foster, F. E. Roberts, C. Yang, D. R. Lieberman, R. A. Reamer, D. M. Tschaen, T. R. Verhoeven, P. J. Reider, Y. S. Lo, L. T. Rossano, A. S. Brookes, D. Meloni, J. R. Moore, J. F. Arnett, J. Org. Chem. 1994, 59, 6391-6394; b) Y.-J. Ding, Y. Li, S.-Y. Dai, Q. Lan, X.-S. Wang, Org. Biomol. Chem. 2015, 13, 3198-3201; c) M. Seki, M. Nagahama, J. Org. Chem. 2011, 76, 10198-10206; d) S. B. Madasu, N. A. Vekariya, C. Koteswaramma, A. Islam, P. D. Sanasi, R. B. Korupolu, Org. Process Res. Dev. 2012, 16, 2025-2030; e) L. Ackermann, Org. Process Res. Dev. 2015, 19, 260-269; f) A. Jim_nez-Somarribas, R. M. Williams, Tetrahedron 2013, 69, 7505–7512.
[23] a) B. Satyanarayana, Y. Sumalatha, S. Venkatraman, G. Mahesh Reddy, P. Pratap Reddy, Synth. Commun. 2005, 35, 1979-1982; b) C. V. Kavitha, S. L. Gaonkar, J. N. Narendra Sharath Chandra, C. T. Sadashiva, K. S. Rangappa, Biorg. Med. Chem. 2007, 15, 7391-7398; c) K. M. Rajesh, P. Kyungho, L. Sunwoo, Adv. Synth. Catal. 2010, 352, 3255-3266; d) X. Bao, W. Zhu, W. Yuan, X. Zhu, Y. Yan, H. Tang, Z. Chen, Eur. J. Med. Chem. 2016, 123, 115-127.
[24] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
[25] a) J. T. Thatai, C.-H. Cheng, Angew. Chem. Int. Ed. 2007, 46, 5921-5924; b) S. Mannathan, C.-H. Cheng, Chem. Commun. 2013, 49, 1557-1559; c) Y.-C. Hong, P. Gandeepan, S. Mannathan, W.-T. Lee, C.-H. Cheng, Org. Lett. 2014, 16, 2806-2809; d) C.-M. Yang, M. Jeganmohan, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 3610-3613; e) Y. Chun‐Ming, M. Subramaniyan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 12212-12216.
[26] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
[27] a) Kumar, K. S.; Adepu, R.; Sandra, S.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Misra, P.; Pal, M. Bioorg. Med. Chem. Lett. 2012, 22, 1146; b) G. Wang, X. Chen, Y. Deng, Z. Li, X. Xu, J. Agric. Food. Chem. 2015, 63, 6883.
Chapter 3
[1] a) R. T. Hendricks, S. R. Spencer, J. F. Blake, J. B. Fell, J. P. Fischer, P. J. Stengel, V. J. P. Leveque, S. LePogam, S. Rajyaguru, I. Najera, J. A. Josey, S. Swallow, Bioorg. Med. Chem. Lett. 2009, 19, 410-414; b) C. Valente, R. C. Guedes, R. Moreira, J. Iley, J. Gut, P. J. Rosenthal, Bioorg. Med. Chem. Lett. 2006, 16, 4115-4119; c) R. Bihovsky, M. Tao, J. P. Mallamo, G. J. Wells, Bioorg. Med. Chem. Lett. 2004, 14, 1035-1038; d) E. W. Brooke, S. G. Davies, A. W. Mulvaney, M. Okada, F. Pompeo, E. Sim, R. J. Vickers, I. M. Westwood, Bioorg. Med. Chem. Lett. 2003, 13, 2527-2530; e) X. Chen, S. Zhang, Y. Yang, S. Hussain, M. He, D. Gui, B. Ma, C. Jing, Z. Qiao, C. Zhu, Q. Yu, Biorg. Med. Chem. 2011, 19, 7262-7269; f) H. A. Bhatti, M. Khatoon, M. al-Rashida, H. Bano, N. Iqbal, N. Zaib un, S. Yousuf, K. M. Khan, A. Hameed, J. Iqbal, Bioorg. Chem. 2017, 71, 10-18.
[2] a) M. Zia-ur-Rehman, J. A. Choudary, S. Ahmad, H. L. Siddiqui, Chem. Pharm. Bull. 2006, 54, 1175-1178; b) S. Andrea, O. Takashi, M. Antonio, T. S. Claudiu, Curr. Med. Chem. 2003, 10, 925-953; c) S. Syed Shoaib Ahmad, R. Gildardo, A. Muhammad, Mini-Rev. Med. Chem. 2013, 13, 70-86; d) c. Angela, S. Andrea, M. Antonio, T. S. Claudiu, Curr. Cancer Drug Targets 2002, 2, 55-75.
[3] a) S. Debnath, S. Mondal, Eur. J. Org. Chem. 2018, 2018, 933-956; b) X. Rabasseda, S. Hopkins, Drugs Today 1994, 30, 557-564; c) T. Wroblewski, A. Graul, J. Castaner, Drugs Future 1998, 23, 365-369; d) J. Drews, Science 2000, 287, 1960; e) P. Sanphui, S. K. Pramanik, N. Chatterjee, P. Moorthi, B. Banerji, S. C. Biswas, PLOS ONE 2013, 8, e78842; f) S. Hanessian, H. Sailes, E. Therrien, Tetrahedron 2003, 59, 7047-7056; g) T. S. Virk, N. V. Ilawe, G. Zhang, C. P. Yu, B. M. Wong, J. M. W. Chan, ACS Omega 2016, 1, 1336-1342.
[4] a) J. G. Lombardino, E. H. Wiseman, W. M. McLamore, J. Med. Chem. 1971, 14, 1171-1175; b) J. G. Lombardino, E. H. Wiseman, J. Med. Chem. 1972, 15, 848-849; c) C. Nicolas, M. Verny, I. Giraud, M. Ollier, M. Rapp, J.-C. Maurizis, J.-C. Madelmont, J. Med. Chem. 1999, 42, 5235-5240; d) M. Inagaki, T. Tsuri, H. Jyoyama, T. Ono, K. Yamada, M. Kobayashi, Y. Hori, A. Arimura, K. Yasui, K. Ohno, S. Kakudo, K. Koizumi, R. Suzuki, M. Kato, S. Kawai, S. Matsumoto, J. Med. Chem. 2000, 43, 2040-2048; e) G. J. Wells, M. Tao, K. A. Josef, R. Bihovsky, J. Med. Chem. 2001, 44, 3488-3503; f) L. Zhuang, J. S. Wai, M. W. Embrey, T. E. Fisher, M. S. Egbertson, L. S. Payne, J. P. Guare, J. P. Vacca, D. J. Hazuda, P. J. Felock, A. L. Wolfe, K. A. Stillmock, M. V. Witmer, G. Moyer, W. A. Schleif, L. J. Gabryelski, Y. M. Leonard, J. J. Lynch, S. R. Michelson, S. D. Young, J. Med. Chem. 2003, 46, 453-456; g) R. J. Cherney, R. Mo, D. T. Meyer, K. D. Hardman, R.-Q. Liu, M. B. Covington, M. Qian, Z. R. Wasserman, D. D. Christ, J. M. Trzaskos, R. C. Newton, C. P. Decicco, J. Med. Chem. 2004, 47, 2981-2983; h) P. Francotte, P. de Tullio, E. Goffin, G. Dintilhac, E. Graindorge, P. Fraikin, P. Lestage, L. Danober, J.-Y. Thomas, D.-H. Caignard, B. Pirotte, J. Med. Chem. 2007, 50, 3153-3157.
[5] a) G. Wittig, Naturwissenschaften 1942, 30, 696-703; b) G. Wittig, L. Pohmer, Angew. Chem. 1955, 67, 348-348; c) G. Wittig, E. Knauss, Chem. Ber. 1958, 91, 895-907; d) G. Wittig, R. W. Hoffmann, Chem. Ber. 1962, 95, 2718-2728.
[6] a) J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291; b) J. D. Roberts, D. A. Semenow, H. E. Simmons, L. A. Carlsmith, J. Am. Chem. Soc. 1956, 78, 601-611.
[7] a) R. Huisgen, H. Rist, Naturwissenschaften 1954, 41, 358-359; b) R. Huisgen, H. Rist, Justus Liebigs Ann. Chem. 1955, 594, 137-158.
[8] a) M. Stiles, R. G. Miller, J. Am. Chem. Soc. 1960, 82, 3802-3802; b) M. Stiles, R. G. Miller, U. Burckhardt, J. Am. Chem. Soc. 1963, 85, 1792-1797.
[9] G. Köbrich, Angew. Chem. Int. Ed. Engl. 1962, 1, 329-329.
[10] a) L. Friedman, F. M. Logullo, J. Org. Chem. 1969, 34, 3089-3092; b) L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1549-1549.
[11] a) A. M. Orendt, J. C. Facelli, J. G. Radziszewski, W. J. Horton, D. M. Grant, J. Michl, J. Am. Chem. Soc. 1996, 118, 846-852; b) O. L. Chapman, C. C. Chang, J. Kolc, N. R. Rosenquist, H. Tomioka, J. Am. Chem. Soc. 1975, 97, 6586-6588; c) J. G. Radziszewski, B. A. Hess, R. Zahradnik, J. Am. Chem. Soc. 1992, 114, 52-57; d) R. Warmuth, Angew. Chem. Int. Ed. Engl. 1997, 36, 1347-1350; e) P. G. Wenthold, R. R. Squires, W. C. Lineberger, J. Am. Chem. Soc. 1998, 120, 5279-5290; f) R. Warmuth, Chem. Commun. 1998, 59-60; g) P. Christopher Buxton, M. Fensome, H. Heaney, K. G. Mason, Tetrahedron 1995, 51, 2959-2968.
[12] a) A. E. Clark, E. R. Davidson, J. Am. Chem. Soc. 2001, 123, 10691-10698; b) J. Cioslowski, P. Piskorz, D. Moncrieff, J. Am. Chem. Soc. 1998, 120, 1695-1700; c) B. R. Beno, Chem. Commun. 1998, 301-302; d) E. Kraka, D. Cremer, J. Am. Chem. Soc. 1994, 116, 4929-4936; e) A. C. Scheiner, H. F. Schaefer, B. Liu, J. Am. Chem. Soc. 1989, 111, 3118-3124; f) S. G. Wierschke, J. J. Nash, R. R. Squires, J. Am. Chem. Soc. 1993, 115, 11958-11967; g) F. C. Gozzo, M. N. Eberlin, J. Org. Chem. 1999, 64, 2188-2193.
[13] a) C. D. Campbell, C. W. Rees, J. Chem. Soc. (C) 1969, 742-747; b) S. E. Whitney, M. Winters, B. Rickborn, J. Org. Chem. 1990, 55, 929-935; c) C. D. Campbell, C. W. Rees, Chem. Commun. (London) 1965, 192-193; d) S. E. Whitney, B. Rickborn, J. Org. Chem. 1988, 53, 5595-5596.
[14] T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron Lett. 1991, 32, 6735-6736.
[15] L. Verbit, J. S. Levy, H. Rabitz, W. Kwalwasser, Tetrahedron Lett. 1966, 7, 1053-1055.
[16] J. I. G. Cadogan, A. G. Rowley, J. T. Sharp, B. Sledzinski, N. H. Wilson, J. Chem. Soc., Perkin Trans. 1 1975, 1072-1074.
[17] F. M. Beringer, S. J. Huang, J. Org. Chem. 1964, 29, 445-448.
[18] a) T. Kitamura, M. Yamane, J. Chem. Soc., Chem. Commun. 1995, 983-984; b) T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679.
[19] a) P. P. Wickham, K. H. Hazen, H. Guo, G. Jones, K. H. Reuter, W. J. Scott, J. Org. Chem. 1991, 56, 2045-2050; b) P. P. Wickham, K. H. Reuter, D. Senanayake, H. Guo, M. Zalesky, W. J. Scott, Tetrahedron Lett. 1993, 34, 7521-7524.
[20] S. Kovács, Á. I. Csincsi, T. Z. Nagy, S. Boros, G. Timári, Z. Novák, Org. Lett. 2012, 14, 2022-2025.
[21] Y. Sumida, T. Kato, T. Hosoya, Org. Lett. 2013, 15, 2806-2809.
[22] T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730-1733.
[23] J.-A. García-López, M. F. Greaney, Org. Lett. 2014, 16, 2338-2341.
[24] H. Yoshio, S. Takaaki, K. Hiroshi, Chem. Lett. 1983, 12, 1211-1214.
[25] a) M. V. Pham, B. Ye, N. Cramer, Angew. Chem. Int. Ed. 2012, 51, 10610-10614; b) S. Debnath, S. Mondal, J. Org. Chem. 2015, 80, 3940-3948; c) O. Planas, C. J. Whiteoak, A. Company, X. Ribas, Adv. Synth. Catal. 2015, 357, 4003-4012; d) D. Kalsi, B. Sundararaju, Org. Lett. 2015, 17, 6118-6121; e) N. Thrimurtulu, R. Nallagonda, C. M. R. Volla, Chem. Commun. 2017, 53, 1872-1875; f) T. Lan, L. Wang, Y. Rao, Org. Lett. 2017, 19, 972-975; g) W. Xie, J. Yang, B. Wang, B. Li, J. Org. Chem. 2014, 79, 8278-8287; h) B. Maheshwar Rao, J. S. Yadav, B. Sridhar, B. V. Subba Reddy, Org. Biomol. Chem. 2018, 16, 5163-5166; i) D. K. Barange, T. C. Nishad, N. K. Swamy, V. Bandameedi, D. Kumar, B. R. Sreekanth, K. Vyas, M. Pal, J. Org. Chem. 2007, 72, 8547-8550.
[26] a) C. B. Bheeter, J. K. Bera, H. Doucet, Adv. Synth. Catal. 2012, 354, 3533-3538; b) N. Conde, F. Churruca, R. SanMartin, M. T. Herrero, E. Domínguez, Adv. Synth. Catal. 2015, 357, 1525-1531; c) J. K. Laha, K. P. Jethava, N. Dayal, J. Org. Chem. 2014, 79, 8010-8019; d) S. Rousseaux, S. I. Gorelsky, B. K. W. Chung, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 10692-10705; e) W. D. Guerra, R. A. Rossi, A. B. Pierini, S. M. Barolo, J. Org. Chem. 2016, 81, 4965-4973; f) Y. Li, Q. Ding, G. Qiu, J. Wu, Org. Biomol. Chem. 2014, 12, 149-155; g) C. Martínez, A. E. Bosnidou, S. Allmendinger, K. Muñiz, Chem. Eur. J. 2016, 22, 9929-9932; h) T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955-4957; i) Y.-Y. Han, H. Wang, S. Yu, Org. Chem. Front. 2016, 3, 953-956; j) S. Feng, S. Li, J. Li, J. Wei, Org. Chem. Front. 2019, 6, 517-522.
[27] a) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301; b) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003-8104; c) G. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404-9432; d) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333-9403; e) K. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302-9332; f) D.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977-9015; g) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246.
[28] a) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 10578-10599; b) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li, W. Su, Org. Chem. Front. 2014, 1, 843-895; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; d) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299; e) N. A. Harry, S. Saranya, S. M. Ujwaldev, G. Anilkumar, Catal. Sci. Technol., 2019, 9, 1726-1743; f) E. A. Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015, 48, 1503-1514.
[29] a) V. P. Ananikov, ACS Catal. 2015, 5, 1964-1971; b) J. E. Dander, N. K. Garg, ACS Catal. 2017, 7, 1413-1423; c) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; d) Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864-8907; e) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-1651; f) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; g) P. Gandeepan, C.-H. Cheng, Acc. Chem. Res. 2015, 48, 1194-1206; h) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; i) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787-8863; j) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; k) J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227; l) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976.
[30] a) M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54-55; b) T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359-5362; c) T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085-3088; d) T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470-1471; e) N. Wang, S.-C. Zheng, L.-L. Zhang, Z. Guo, X.-Y. Liu, ACS Catal. 2016, 6, 3496-3505; f) Z.-J. Fang, S.-C. Zheng, Z. Guo, J.-Y. Guo, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 9528-9532.
[31] a) E. M. O'Brien, E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2003, 125, 10498-10499; b) Y. Kajita, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2008, 130, 17226-17227; c) K. Nakai, T. Kurahashi, S. Matsubara, Chem. Lett. 2013, 42, 1238-1240; d) Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058-6059; e) T. Shiba, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2013, 135, 13636-13639; f) S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588-3593; g) K. Fujiwara, T. Kurahashi, S. Matsubara, Org. Lett. 2010, 12, 4548-4551.
[32] a) Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494-7495; b) G. L. Beutner, Y. Hsiao, T. Razler, E. M. Simmons, W. Wertjes, Org. Lett. 2017, 19, 1052-1055; c) M. Sun, Y.-N. Ma, Y.-M. Li, Q.-P. Tian, S.-D. Yang, Tetrahedron Lett. 2013, 54, 5091-5095.
[33] a) T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429-1431; b) I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055-1058; c) Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873-11876; d) Y. Wang, Y. Wu, Y. Li, Y. Tang, Chem. Sci. 2017, 8, 3852-3857; e) Y. Wang, Z. Wang, X. Chen, Y. Tang, Org. Chem. Front. 2018, 5, 2815-2819; f) Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232-6235.
[34] a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-8119; b) W. Lu, J. Chen, M. Liu, J. Ding, W. Gao, H. Wu, Org. Lett. 2011, 13, 6114-6117.
[36] a) S. Chuprakov, F. W. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757-4759; b) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510-2511; c) B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746-3749; d) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972-14974; e) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862-872.
[37] a) M. Teders, L. Pitzer, S. Buss, F. Glorius, ACS Catal. 2017, 7, 4053-4056; b) H. Wang, S. Yu, Org. Lett. 2015, 17, 4272-4275; c) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; d) Y. Jian, M. Chen, B. Huang, W. Jia, C. Yang, W. Xia, Org. Lett. 2018, 20, 5370-5374.
[38] a) R. Zeng, G. Dong, J. Am. Chem. Soc. 2015, 137, 1408-1411; b) Y.-C. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel, R. Gramage-Doria, Org. Lett. 2017, 19, 6404-6407; c) A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044-5051; d) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly, S. Adimurthy, Org. Lett. 2019, 21, 2043-2047.
[39] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179-5182; b) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 2002, 124, 5059-5067; c) H. A. Duong, J. Louie, J. Organomet. Chem. 2005, 690, 5098-5104; d) H. A. Duong, J. Louie, Tetrahedron 2006, 62, 7552-7559; e) J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890-3908.
[40] a) A. J. Barker, T. M. Paterson, R. K. Smalley, H. Suschitzky, J. Chem. Soc., Perkin Trans. 1 1979, 2203-2208; b) N. Bashir, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1973, 868-872; c) J. G. Archer, A. J. Barker, R. K. Smalley, J. Chem. Soc., Perkin Trans. 1 1973, 1169-1173.
[41] a) V. H. Thorat, N. S. Upadhyay, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 4784-4789; b) V. H. Thorat, N. S. Upadhyay, M. Murakami, C.-H. Cheng, Adv. Synth. Catal. 2018, 360, 284-289.
[42] a) M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Chem. Asian J. 2010, 5, 153-159; b) Z. Liu, R. C. Larock, Org. Lett. 2003, 5, 4673-4675; c) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113; d) Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198-3209; e) D. Qiu, J. He, X. Yue, J. Shi, Y. Li, Org. Lett. 2016, 18, 3130-3133; f) B. Cheng, B. Bao, Y. Chen, N. Wang, Y. Li, R. Wang, H. Zhai, Org. Chem. Front. 2017, 4, 1636-1639; g) T. Yao, B. Ren, B. Wang, Y. Zhao, Org. Lett. 2017, 19, 3135-3138; h) X. Huang, W. Zhao, D.-L. Chen, Y. Zhan, T. Zeng, H. Jin, B. Peng, Chem. Commun. 2019, 55, 2070-2073; i) T. Zheng, J. Tan, R. Fan, S. Su, B. Liu, C. Tan, K. Xu, Chem. Commun. 2018, 54, 1303-1306; j) C.-H. Sun, Y. Lu, Q. Zhang, R. Lu, L.-Q. Bao, M.-H. Shen, H.-D. Xu, Org. Biomol. Chem. 2017, 15, 4058-4063; k) J. Zhang, Z.-X. Chen, T. Du, B. Li, Y. Gu, S.-K. Tian, Org. Lett. 2016, 18, 4872-4875; l) L. Zhou, H. Li, W. Zhang, L. Wang, Chem. Commun. 2018, 54, 4822-4825; m) T. Roy, S. S. Bhojgude, T. Kaicharla, M. Thangaraj, B. Garai, A. T. Biju, Org. Chem. Front. 2016, 3, 71-76; n) D. Xu, Y. Zhao, D. Song, Z. Zhong, S. Feng, X. Xie, X. Wang, X. She, Org. Lett. 2017, 19, 3600-3603; o) A. Bunescu, C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 10284-10286; p) J. Shin, J. Lee, D. Ko, N. De, E. J. Yoo, Org. Lett. 2017, 19, 2901-2904.
[43] a) Y. Miura, T. Ohnishi, J. Org. Chem. 1988, 53, 3012-3016; b) M. Yozo, O. Tetsuya, K. Masayoshi, K. Takamasa, Bull. Chem. Soc. Jpn. 1990, 63, 57-63; c) M. Yozo, N. Yuji, Bull. Chem. Soc. Jpn. 1990, 63, 1154-1159; d) W. C. Danen, R. W. Gellert, J. Am. Chem. Soc. 1980, 102, 3264-3265; e) G. Zomer, J. B. F. N. Engberts, Tetrahedron Lett. 1977, 18, 3901-3904; f) M. Yozo, N. Yuji, K. Masayoshi, Bull. Chem. Soc. Jpn. 1978, 51, 947-948; g) M. Yozo, N. Yuji, K. Masayoshi, Chem. Lett. 1978, 7, 521-524; h) J. A. Baban, B. P. Roberts, J. Chem. Soc., Perkin Trans. 2 1978, 678-683; i) R. Sutcliffe, M. Anpo, A. Stolow, K. U. Ingold, J. Am. Chem. Soc. 1982, 104, 6064-6070; j) P. M. Carton, B. C. Gilbert, H. A. Laue, R. O. Norman, R. C. Sealy, J. Chem. Soc., Perkin Trans. 2, 1975, 1245-1249.
[44] a) A. Rajca, Chem. Rev. 1994, 94, 871-893; b) M. Abe, Chem. Rev. 2013, 113, 7011-7088; c) N. M. Gallagher, A. Olankitwanit, A. Rajca, J. Org. Chem. 2015, 80, 1291-1298; d) I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303-349; e) A. Rajca, Chem. Eur. J. 2002, 8, 4834-4841; f) M. Abe, J. Ye, M. Mishima, Chem. Soc. Rev. 2012, 41, 3808-3820; g) P. P. Power, Chem. Rev. 2003, 103, 789-810; h) R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321-1338.
[45] a) Y. Miura, H. Asada, M. Kinoshita, K. Ohta, J. Phys. Chem. 1983, 87, 3450-3455; b) T. Koenig, J. A. Hoobler, W. R. Mabey, J. Am. Chem. Soc. 1972, 94, 2514-2515; c) A. Rajca, K. Shiraishi, M. Pink, S. Rajca, J. Am. Chem. Soc. 2007, 129, 7232-7233; d) Y. Miura, A. Yamamoto, Y. Katsura, M. Kinoshita, J. Org. Chem. 1980, 45, 3875-3880; e) Y. Miura, A. Yamamoto, Y. Katsura, M. Kinoshita, S. Sato, C. Tamura, J. Org. Chem. 1982, 47, 2618-2622; f) Y. Miura, T. Ohana, J. Org. Chem. 1988, 53, 5770-5772; g) A. R. Forrester, E. M. Johansson, R. H. Thomson, J. Chem. Soc., Perkin Trans. 1 1979, 1112-1119; h) A. T. Balaban, A. Vasilescu, Tetrahedron Lett. 1972, 13, 571-574.
[46] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
[47] A. R. Katritzky, J. W. Rogers, R. M. Witek, A. V. Vakulenko, P. P. Mohapatra, P. J. Steel, R. Damavarapu, J. Energetic Mater. 2007, 25, 79-109.
[48] a) Y. Sato, T. Tamura, A. Kinbara, M. Mori, Adv. Synth. Catal. 2007, 349, 647- 661; b) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 2002, 1454-1458; c) D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827-5828; d) E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280-7286.