研究生: |
普馬諾 Patil, Manoj Dnyanadev |
---|---|
論文名稱: |
金金屬催化炔類轉化成高度官能化之碳環與雜環之途徑 Gold-Catalyzed Divergent Transformations of Alkyne into Highly Functionalized Carbo and Heterocycles |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
彭之皓
Peng, Chi-How 蔡易州 Tsai, Yi-Chou 李文泰 Li, Wen-Tai 侯敦仁 Hou, Duen-Ren |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 483 |
中文關鍵詞: | 金催化 、有機合成 、有機金屬化學 、催化劑 、金碳烯化學 、金碳烯 |
外文關鍵詞: | Gold catalyst, Organic synthesis, Organometallic Synthesis, catalysis, carbene chemistry, gold carbene |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文描述利用金金屬及銀金屬催化劑開發新型有機合成轉化方法,使用這些金屬能夠容易將基質在溫和、選擇性以及有效的條件下合成轉化成一系列雜環產物。為了使讀者容易理解,本篇論文將分成四個章節進行介紹。
第一章內容包含從炔類、硝酮和親核試劑而得的金碳烯,條件下的曼尼希反應指出親核試劑控制了化學選擇性有著協同催化作用。而對於1-炔基-4-醇和2-乙炔基酚,在金催化氧化反應硝酮的情況下得到具同位選擇性的含氮二氫呋喃-3(2H)-酮,該反應機制涉及金碳烯和亞胺透過氧-氫-氮鍵結的曼尼希反應。而對於芳氧基乙炔來說,他們金烯醇選擇性的與硝酮反應生成3-亞烷基苯並呋喃-2-酮(由碳-氫-氧 氫鍵控制)。
第二章內容包含由蒽氧基與芳氧基乙炔或是芳基炔丙基醚行一系列環化反應建構苯並呋喃[2,3-b]喹啉和6H-chromeno [3,4-b]喹啉骨架,這些雜環骨架雖然具有生物重要性但難以從現今文獻方法中得到,而本篇提及的策略藉由廣泛的基質被凸顯出來。而推測反應機制透過α-亞氨基金碳烯間體、氧芳基和苯甲醛之間的依序環化反應的機理。
第三章內容包含由兩種不同的芳烴與金碳烯提供的三芳基甲烷的產物的金催化的氧化交叉偶聯反應組成。值得注意的是以磷酸作為助催化劑(10 mol%)在四氫呋喃溶液下可以有效抑制競爭性均相交聯反應。這些交叉偶聯反應具有廣泛適用的基質由吲哚,芳基胺和α-芳基重氮氰化物或酯類。我們的反應機理分析指出芳基苯胺的鹼度極大地影響了對交叉偶聯模的化學選擇性,並且還發現磷酸的存在增強了交叉偶聯效率,進一步為這種新的催化作用提供了機械學見解。
第四章內容包含金催化三種分子由丙酸酯,呋喃和異噁唑的逐步環化而產生具取代基的吡咯,這些環化反應具有廣泛的基質應用以及產物吡咯存在於許多生物活性分子中。
This dissertation describes development of new synthetic organic transformation using gold and silver catalysts. The use of these metals enable mild, selective and efficient transformation to give a range of heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter one is comprised of gold enolates from alkynes, nitrones and nucleophiles; their Mannich reactions manifest nucleophile-directed chemoselectivity to indicate a cooperative catalysis. For 1-alkyn-4-ols and 2-ethynylphenols, their gold-catalyzed nitrone oxidations afforded N-containing dihydrofuran-3(2H)-ones with syn-selectivity; the mechanism involves Mannich reactions of gold enolates with imines via an O-H--N bonding. For aryloxyethynes, their gold enolates react selectively with nitrones to deliver 3-alkylidenebenzofuran-2-ones, as controlled by a C-H--O hydrogen bonding.
Chapter two is comprised of a facile annulation of anthranils with aryloxyethynes or aryl propargyl ethers to construct useful benzofuro[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline frameworks respectively; these heterocycles are not readily available from literature methods despite their biological significance. This high atom- and step-economy strategy is highlighted by a broad substrate scope. The reaction mechanism is proposed to proceed through sequential cyclizations among the oxyaryl group, gold carbene and benzaldehyde of the α-imino gold carbene intermediates.
Chapter three is comprised of gold-catalyzed oxidative cross-coupling reactions of two distinct arenes with one gold carbene furnish triarylmethane products. Notably, competitive homo-coupling reactions are efficiently suppressed with a phosphoric acid as co-catalyst (10 mol %) in THF. These cross-coupling reactions have applicable substrates over a wide scope, with respect to indoles, arylamines and α-aryl diazo cyanides or esters. Our mechanistic analysis indicates that the basicity of the arylanilines greatly affects the chemoselectivity toward the cross-coupling mode. We discover also that the presence of a phosphoric acid enhances the cross-coupling efficiency, further providing mechanistic insight into this new catalysis.
Chapter four is comprised of gold-catalyzed three component atom and step-economical annulations between propiolates, furans and isoxazoles to yield substituted pyrrole. These annulations were compatible with substrates over a wide scope. These resulting pyrroles are present in many bioactive molecules.
References for Chapter 1
1. a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; T. Hudlicky, Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
2. a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
3. a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
4. a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596. g) Gorin, D. J.; Dube, P.;Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480.
5. a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
6. a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
7. a) Hutchings, G. J. Gold Bull. 1996, 29, 123. b) Hutchings, G. J. Catal. Today, 2002, 72, 11.
8. Reviews for gold-catalyzed annulation or cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6. c) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. d) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. e) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
9. a) Soriano, E.; J. Marco-Contelles. Acc. Chem. Res. 2009, 42, 1026. b) Lee, S. I.; N. Chatani. Chem. Commun. 2009, 371. c) Kirsch S. F. Synthesis 2008, 3183. d) Muzart. J. Tetrahedron, 2008, 64, 5815. e) Widenhoefer R. A. Chem. Eur. J. 2008, 14, 5382.
10. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. b) Bongers, N.; Krause. N. Angew. Chem. Int. Ed. 2008, 47, 2178. c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. d) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
11. a) Boorman, T. C.; Larrosa. I. Chem. Soc. Rev. 2011, 40, 1910. b) Bandini. M. Chem. Soc. Rev. 2011, 40, 1358. c) Krause, N.; Winter. C. Chem. Rev. 2011, 111, 1994. d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. e) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. f) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960.
12. Zhang, L. Acc. Chem. Res., 2014, 47, 877.
13. Yeom, H. S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
14. a) Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226. b) Zhang, L. Acc. Chem. Res. 2014, 47, 877. c) Zheng, Z; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448. d) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
15. a) James, M. C. B.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 273. b) Nevado, C.; de Haro, T. In New Strategies in Chemical Synthesis and Catalysis; Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp 247. c) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226. d) Moss, R. A., Doyle, M. P., Eds. Contemporary Carbene Chemistry; Wiley: New York, 2014; Chapter 16. e) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. f) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061; For 8-methylquinoline oxides, see selected examples: g) Li, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. h) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. i) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. j) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200; For other pyridine N-oxides, see selected examples: k) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
16. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
17. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
18. a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. b) Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
19. He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
20. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
21. a) Wei, H.; Zhou, S.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Adv. Synth. Catal. 2019, 361, 3569. b) Wei, H.; Bao, M.; Dong, K.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Angew. Chem. Int. Ed. 2018, 57, 17200.
22. a) Trost, B. M.; Bartlett, M. J. Acc. Chem. Res. 2015, 48, 688. b) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 1595. c) Geary, L. M.; Hultin, P. G. Tetrahedron: Asymmetry, 2009, 20, 131. d) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65.
23. a) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. b) Córdova, A. Acc. Chem. Res. 2004, 37, 102. c) Verkade, J. M. M; van Hemert, L. J. C.; Quaedflieg, P. J. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29.
24. Gallier, F.; Martel, A.; Dujardin, G. Angew. Chem. Int. Ed. 2017, 56, 12424.
25. a) Tejedor, D. G.; Cotos, Méndez-Abt, L.; García-Tellado F. Chem. Soc. Rev. 2013, 42, 458. b) Castro, A. M. M. Chem. Rev. 2004, 104, 2939. c) Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002, 1461-1471; d) Nubbemeyer, U. Synthesis, 2003, 7, 961.
26. Reviews for metal enolates: a) Braun, M. Helvetica chimica Acta, 2015, 98, 1. b) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076. c) Denmark, S. E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem. Int. Ed. 2005, 44, 4682. d) Korch, K. M.; Loskot, S. A.; Stoltz, B. M. In Patai’s Chemistry of Functional Groups, John Wiley & Sons. Ltd., 2016, pages 1-85; e) R. Mahrwald, Modern Aldol reactions, Ed. R. Mahrwald, Wiley, 2004, vol. 1, pages 1-328.
27. Crystallographic data of compound 1-4c and 1-5a were deposited in Cambridge Crystallographic Data Center: a) 1-4c CCDC 1829107, b) 1-5a 2023104.
28. a) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun., 2011, 47, 7815. b) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci., 2013, 4, 739. c) Huple, D. B.; Mokar B. D.; Liu, R.-S. Angew. Chem., Int. Ed., 2015, 54, 14924.
29. Wei, H.; Zhou, S.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Adv. Synth. Catal. 2019, 361, 3569.
30. For the role of a hydrogen bonding on metal enolates, see selected examples: a) Hu, W.; Xu, X., Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. b) Huang, H.; Guo, X.; Hu, W. Angew. Chem. Int. Ed. 2007, 46, 1337. c) Qiu, H.; Li, M.; Jiang, L.-Q.; Li, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M.; Hu, W.-H. Nat. Chem. 2012, 4, 733.
31. a) For compounds (1-1a) – (1-1g): Graf, K.; Rühl, C. L; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727. b) For compounds (1-1h)-(1-1j)
32. Compounds (1-2a) –(1-2k): Vasu, D.; Liu, R.-S. Chem. Eur. J. 2012, 18, 13638.
References for Chapter 2
1. General reviews on preparation of nitrogen-heterocycles: a) “Amino-Based Building Blocks for the Construction of Biomolecules (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; b) Balasubramanian, M., Keay J. G. Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300. c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143. d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004. (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.
2. π-Acid catalysis reviews: (a) Furstner, A.; Davies,P. W.; Angew. Chem. Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395.
3. General and recent reviews of gold catalysis and its applications a) Obradors, C.; Echavarren A. M. Acc. Chem. Res. 2014, 47, 902. b) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953. c) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462. d) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448. e) Lopez, F.; Mascarenas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. f) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
4. a) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem. Int. Ed. 2012, 51, 7384. b) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926. c) Doyle, M. P. Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561.
5. Doyle, M. P.; Hu, W.; Timmons, D. J. Org. Lett. 2001, 3, 3741.
6. a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu X.; Ye, L.-W. Chem. Sci., 2015, 6, 1265.
7. Giri, S. S.; Liu, R.-S. Chem. Sci., 2018, 9, 2991.
8. Zeng, Z.; Jin, H.; Xie , J.; Tian , B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett., 2017, 19, 1020.
9. Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794.
10. Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 16549.
11. Tsai, M.-H.; Wang, C.-Y.; Raj, A. S. K.; Liu, R.-S. Chem. Commun. 2018, 54, 10866.
12. a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal., 2016, 358, 1348. b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu X.; Ye, L.-W. Org. Biomol. Chem., 2017, 15, 8483.
13. a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci., 2015, 6, 1265. b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li ,T.; Ye, L.-W. Chem. Asian J., 2015, 10, 1854 c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X. Ye, L.-W. Angew. Chem. Int. Ed., 2017, 56, 605. d) Giri, S. S. Liu, R.-S. Chem. Sci., 2018, 9, 2991. e) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci., 2018, 9, 4488. f) Kardile, R. D.; Kale, B. S.; Sharma P.; Liu, Rai-Shung. Org. Lett., 2018, 20, 3806. g) Hsieh, H.-C.; Tan, K.-C.; Raj, A. S. K.; Liu, R.-S. Chem. Commun., 2019, 55, 1979.
14. a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794 b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 12688 c) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 6935. d) Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 16549. e) Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci., 2019, 10, 1201.
15. a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 1026 b) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 12736.
16. a) Ayafor, J. F.; Sondengam, B. L.; Bilon, A. N.; Tsamo, E. S.; Kimbu, F.; Okogun, J. I. J. Nat. Prod., 1982, 45, 714. b) Okogun, J. I.; Ayafor, J. F. J. Chem. Soc., Chem. Commun., 1977, 0, 652.
17. a) Chen, K.-S.; Chang, Y.-L.; Teng, C.-M.; Chen, C.-F.; Wu, Y.-C. Planta Med., 2000, 66, 80. b) Yang, G.; Chen, D. Chem Biodivers., 2008, 5, 1718.
18. Chaturvedula, V. S. P.; Schilling, J. K.; Miller, J. S; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod., 66, 532.
19. Yang, Z.-D.; Zhang, D.-B.; Ren, J.; Yang, M.-J. Med. Chem. Res., 2012, 21, 722.
20. Emam, A.; Eweis, M.; Elbadry, M. Drug Discoveries & Therapeutics., 2010; 4, 399.
21. Yang, C.-L.; Tseng, C.-H.; Chen, Y.-L.; Lu, C.-M.; Kao, C.-L.; Wu, M.-H.; Tzeng, C.-C. Eur. J. Med. Chem., 2010, 45, 602.
22. a) Kawase, Y.; Yamaguchi, S.; Maeda, O.; Hayashi, A.; Hayashi, I.; Tabata, K.; Kondo, M. J. Heterocyclic Chem., 1979, 16, 487. b) Kawase, Y.; Yamaguchi, S.; Morita, M.; Uesugi, T. Bull. Chem. Soc. Jpn., 1980, 53, 1057.
23. Crystallographic data of compound 2-3a and 2-6l have been deposited at Cambridge Crystallographic Data Centre: 2-3a CCDC: 1897138, 2-6l CCDC: 2026424
24. a) Wang, B.; Liang, M.; Tang, J.; Deng, Y.; Zhao, J.; Sun, H.; Tung, C.-H.; Jia, J.; Xu, Z. Org. Lett., 2016, 18, 4614. b) Han, J.; Shimizu, N.; Lu, Z.; Amii, H.; Hammond, G. B.; Xu, B. Org. Lett., 2014, 16, 3500. c) Barrio, P.; Kumar, M.; Lu, Z.; Han, J.; Xu, B.; Hammond, G. B. Chem. Eur. J., 2016, 22, 16410.
25. a) For compounds (1-1a) – (1-1g): Graf, K.; Rühl, C. L; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727. b) For compounds (1-1h)-(1-1j) V. S. P. R. Lingam, R. Vinodkumar, K. Mukkanti, A. Thomas, B. Gopalan, Tetrahedron Lett., 2008, 49, 4260. c) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 12736.
26. Kitamura, C.; Abe, Y.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H.; Komatsu, T.; Chem. Eur. J., 2010, 16, 890.
27. A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127–134.
References for Chapter 3
1. a) Comprehensive reviews on α-diazocarbonyl compounds, see: Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew. Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet. Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
2. a) Doyle, M.P.; Duffy, R.; Ratnikov, M. Chem. Rev. 2010,110, 704. b) Gil-lingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. c) Sun, X.L.; tang, Y. Acc. Chem. Res. 2008, 41, 937. d) Rh (I)-catalyzed sequential C(sp)–C(sp3) and C(sp3)–C(sp3) bond formation through migratory carbene insertion, Xia, Y.; Feng, S.; Liu. Z. Angew. Chem. Int. Ed. 2015, 54, 7891. e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
3. a) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. b) Morton, D.; Davies, H. M. L. Chem. Soc. Rev. 2011, 40, 1857. c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
4. a) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. b) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q-L. J. Am. Chem. Soc. 2007, 129, 5834. c) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 16374.
5. Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
6. Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284.
7. For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, John Wiley & Sons, 2013.
8. For selected reviews on C–H bond insertion by metal carbenoids: a) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. b) Davies H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 47, 617. c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Davies, H. M. L; Manning, J. R. Nature 2008, 451, 417. e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev. 2010, 110, 704. f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron 2010, 66, 6681. g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem. 2011, 9, 4007. h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
9. a) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed., 2014, 53, 2978.
10. Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904.
11. Chan, W.-W.; Yeung, S. –H.; Zhou, Z.; Chan, A. S. C.; Yu W. -Y. Org. Lett. 2010, 12, 604.
12. Bayindirab, S.; Saracoglu N. RSC Adv. 2016, 6, 72959.
13. Li, M.; Guo, X.; Jin, W.; Zheng, Q.; Liu, S.; Hu, W. Chem. Commun. 2016, 52, 2736.
14. R. R. Singh, R.-S. Liu, Chem. Commun., 2017, 53, 4593-4596.
15. a) Doyle, M. P. in Comprehensive Organometallic Chemistry II, Abel, E. W.; Stone, F. G. A., Ed.; Pergamon: Oxford UK, vol 12, p. 387-469. b) Doyle, M. P.; McKervy, M. A.; Ye, T. Wiley; New York USA, 1998. c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev., 2003, 103, 2861-2904. d) Liu, L.; Zhang, J. Chem. Soc. Rev., 2016, 45, 506-516. e) Fructos, M. R.; Díaz-Requejo M. M.; Pérez, P. J. Chem. Commun. 2016, 52, 7326-7335.
16. For gold carbenes derived from diazo precursors, see selected papers: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Requejo, M. M.; Perez, P. J. A Angew. Chem., Int. Ed., 2005, 44, 5284. b) Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem., Int. Ed., 2015, 54, 883. c) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem -Eur. J., 2013, 19, 1573. d) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc., 2012, 134, 11916-11919. e) Pagar, V. V.; Jadhav, A. M., Liu, R.-S. J. Am. Chem. Soc., 2011, 133, 20728. f) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed., 2012, 51, 11809. g) Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed., 2015, 54, 4923.
17. For Au see: a) Yu, Z.; Ma B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904. b) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed., 2014, 53, 9817. c) López, E.; Lonzi,G.; López, L. A. Organometallics, 2014, 33, 5924. d) Rivilla, I.; Gomez-Emeterio, ́ B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Perez, P. J. Organometallics, 2011, 30, 2855.
18. For Rh, Cu, Ag, Pd, see: a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev., 2010, 110, 704. b) Davies, H. M. L.; Lian, Y.-J. Acc. Chem. Res. 2012, 45, 923. c) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. d) Díaz-Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379. e) Liu, Z.; Wang J. J. Org. Chem. 2013, 78, 10024. f) DeAngelis A., Shurtleff V. W., Dmitrenko, O.; Fox, J. M. J. Am. Chem.Soc. 2011, 133, 1650. g) Rosenfeld, M. J.; Shankar, B. K.; Shechter, H. J. Org.Chem. 1988, 53, 2699. h) Yadagiri, D.; Anbarasan, P. Org. Lett. 2014, 16, 2510. i) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565. j) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
19. For Cu see: a) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594-4595. b) Zhu, C. S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616. For Pd see: c) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed., 2014, 53, 2978.
20. a) Guo, X.; Hu, W.-H. Acc. Chem. Res., 2013, 46, 2427. b) Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem., 2012, 4, 733-738. c) Guan, X.; Yang, L.; Hu, W.-H. Angew. Chem., Int. Ed., 2010, 49, 2190. d) Jing, C.-C.; Xing, D.; Hu, W.-H. Org. Lett., 2015, 17, 4336. e) Jiang, J.; Ma, X.-C.; Liu, S.-Y.; Qian, Y.; Li, F.-P.; Qiu, L.; Wu, X.; Hu, W.-H. Chem. Commun., 2013, 49, 4238.
21. Metal carbenes as dication synthons were previously reported in a stoichiometric fashion whereas this system is performed catalytically. See Liang, K.-W.; Li, W.-T.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. J. Am. Chem. Soc., 1997, 119, 4404.
22. See selected reviews: a) Yeung, C. S.; Dong, V. M. Chem. Rev., 2011, 111, 1215. b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev., 2011, 111, 1780. c) Hussain, I.; Singh, T. Adv. Synth. Catal., 2014, 356, 1661-1696. d) Kuhl, N.; Hopkinson M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed., 2012, 51, 10236. e) Ashenhurst, J. AChem. Soc. Rev.,2010,39, 540.
23. a) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudçrfl, J.-M.; Berkessel, A.; and C. O’Donoghue, M-A. Chem. Eur. J. 2011, 17, 8524. b) Kather, R.; Rychagova, E.; Camacho, P.-S.; Ashbrook, S. E.; Woollins, J. D.; Robben, L.; Lork, E.; Ketkov S. and Beckmann J. Chem. Commun., 2016, 52, 10992.
24. Crystallographic data of compound 3-4b and 3-4’’ was deposited in Cambridge Crystallographic Data Centre: (3-4b)-CCDC: 2009271, (3-4’’)-CCDC: 2009271.
25. Heckrodt, T. J.; Chen,Y.; Singh, Rajinder. Tetrahedron., 2019, 75, 2385.
26. a) Maity, S.; Das, D.; Sarkar, S. and Samanta, R. Org. Lett. 2018, 20, 5167. b) Wang, Q.; Yang, J.; Zheng, Y.; and Liao, X. J. Chem. Res., 2017, 41, 193.
27. a) Singh, R. R.; Liu, R.-S. Chem. Commun., 2017, 53, 4593. b) Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736. c) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787. d) Duplais, C.; Bures, F.; Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 2968.
28. a) Yang, Q.; Lei, X.; Yin, Z.; Deng, Z.; Peng, Y. Synthesis, 2019, 51, 538. b) Gooßen, L. J.; Paetzold, J.; rBriel, O.; Rivas-Nass, A.; Karch, R.; Kayser, B. Synlett, 2005, 2, 0275.
References for Chapter 4
1. For recent reviews, see: a) Jimenez-Nunez, E.; Echavarren, A. M.; Chem. Commun., 2007, 333; b) Hashmi, A. S. K.; Hutchings, G. J.; Angew. Chem. Int. Ed. 2006, 45, 7896; c) Hoffmann-Roder, A.; Krause, N.; Org. Biomol. Chem. 2005, 3, 387.
2. For selected examples, see: a) Manning, J. R.; Davies, H. M.; J. Am. Chem. Soc. 2008, 130, 8602; b) Coffman, K. C.; Palazzo, T. A.; Hartley, T. P.; Fettinger, J. C.; Tantillo, D. J.; Kurth, M. J.; Org. Lett. 2013, 15, 2062; c) Zhou, A. H.; He, Q.; Shu, C.; Yu, Y. F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265; d) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 7803; e) Liu, X. L.; Han, W. Y.; Zhang, X. M.; Yuan, W. C. Org. Lett. 2013, 15, 1246; f) Takikawa, H.; Takada, A.; Hikita, K.; Suzuki, K. Angew. Chem. Int. Ed. 2008, 47, 7446; g) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990; h) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S. RSC Adv. 2015, 5, 18172; i) Pusch, S.; Opatz, T. Org. Lett. 2014, 16, 5430.
3. See selected review for gold-catalyzed N-oxide reactions: a) Zhang, L. Acc. Chem. Res. 2014, 47, 877; b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966; c) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev., 2016, 45, 4448; d) Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev., 2016, 45, 4533.
4. a) Pinho e Melo, T. M. V. Curr. Org. Chem. 2005, 9, 925; b) Iddon, B. Heterocycles 1994, 37, 1263; c) Pace, A.; Buscemi, S.; Vivona, N. Org. Prep. Proc. 2007, 39, 1; d) Hamama, W. S.; Ibrahim, M. E.; Zoorob, H. H. Synth. Commun. 2013, 43, 2393; e) Heaney, F. Eur. J. Org. Chem. 2012, 3043; f) Patil, N. T.; Yamamoto,Y. Chem. Rev. 2008, 108, 3395; g) Lu, T.; Hu, F. Synthesis 2012, 44, 2805; h) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084; i) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2010, 3363.
5. Baschieri, A.; Bernardi, L.; Ricci, A.; Suresh, S.; Adamo, M. F. A. Angew. Chem. Int. Ed. 2009, 48, 9342.
6. Fiandra, C. Del; Piras, L.; Fini, F.; Disetti, P.; Moccia, M.; Adamo, M. F. A. Chem. Commun. 2012, 48, 3863.
7. Adamo, M. F. A.; Nagabelli, M. Org. Lett. 2008, 10, 1807.
8. see [2d]; For trifluoromethylation of isoxazole triflones, see: b) Kawai, H.; Sugita, Y.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Chemistry Open .2014, 3, 14.
9. Lei, X.; Li, L.; He, Y.-P.; Tang, Y. Org. Lett. 2015, 17, 5224.
10. Manning, J. R.; Davies, H. M. L. Tetrahedron, 2008, 64, 6901.
11. Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605.
12. a) Martinez-Farina, C. F.; Jakeman, D. L. Chem. Commun. 2015, 51, 14617; b) Martnez, W. R.; Milito, G. C. G.; da Silva, T. G.; Silva, R. O.; Menezes, P. H. RSC Adv. 2014, 4, 14715; c) Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P. J.; Tekwani, B. L.; Avery, M. A. J. Chem. Inf. Model. 2011, 51, 852; d) Mueller, R.; Rodriguez, A. L.; Dawson, E. S.; Butkiewicz, M. T.; Nguyen, T.; Oleszkiewicz, S.; Bleckmann, A.; Weaver, C. D.; Lindsley, C.W.; Conn, P. J.; Meiler, J. ACS Chem. Neurosci. 2010, 1, 288.
13. a) Hashmi, A. S. K., Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem., Int. Ed., 2005, 44, 2798; b) Martín-Matute, B.; Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. J. Am. Chem. Soc., 2003, 125, 5757.
14. Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Org. Lett. 2018, 20, 3806.
15. Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026.
16. a) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028; b) Llpez, F.; MascareÇas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075; c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; d) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066; e) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280.
17. For bioactive molecules containing pyrrole cores, see: a) Estvez, V.; Villacampa, M.; Menndez, J. C. Chem. Soc. Rev. 2014, 43, 4633; b) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442; c) Carson, J. R.; Carmosin, R. J.; Pitis, P. M.; Vaught, J. L.; Almond, H. R.; Stables, J. P.; Wolf, H. H.; Swinyard, E. A.; White, H. S. J. Med. Chem. 1997, 40, 1578.
18. For bioactive molecules containing imidazo[1,2-a] pyridine cores, see: a) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61; b) Boerner, R. J.; Moller, H. J. Psychopharmakother. 1997, 4, 145; c) Gudmundsson, K.; Boggs, S. D. PCT Int. Appl. WO2006026703, 2006.
19. For a 1,5-acyl shift, see: a) Rao, W.; Koh, M.; Kothandaraman, J. P.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 10811; b) Leboeuf, D.; Simonneau, A.; Aubert, C.; Malacria, M.; Gandon, V.; Fensterbank, L. Angew. Chem. Int. Ed. 2011, 50, 6868; c) Rao, W.; Koh, M. J.; Chan, P. W. H. J. Org. Chem. 2013, 78, 3183.
20. Huguet, N.; Leboeuf, D.; Echavarren, A. M. Chem. Eur. J. 2013, 19, 6581.
21. a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348; b) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028; c) Llpez, F.; MascareÇas, J. L.; Beilstein, J. Org. Chem. 2011, 7, 1075; d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
22. Hashmi, A. S. K.; Carmen Blanco, M.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
23. Crystallographic data of compound 3-4b and 3-4’’ was deposited in Cambridge Crystallographic Data Centre: (3-4b)-CCDC: 2009271, (3-4’’)-CCDC: 2009271.
24. Karad, S. N.; Chung, W.-K. and Liu, R.-S. Chem. Commun., 2015, 51, 13004.
25. Kitamura, C.; Abe, Y.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H.; Komatsu, T.; Chem. Eur. J., 2010, 16, 890.
26. Griesbeck, A. G.; Franke, M.; Neudorfl, J.; Kotaka, H. Beilstein J. Org. Chem. 2011, 7, 127.