簡易檢索 / 詳目顯示

研究生: 薛光隆
Kuang-Lung Hsueh
論文名稱: 以核磁共振光譜探討臺灣眼鏡蛇心臟毒素V與肝素衍生雙醣的交互作用
NMR studies on the interactions of heparin derived disaccharide with cobra cardiotoxin V (CTX A5)
指導教授: 吳文桂
Wen-guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 114
中文關鍵詞: 心臟毒素肝素選擇激發擴散係數硫化
外文關鍵詞: cardiotoxin, heparin, selective excitation, DOSY, sulfation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中將討論臺灣眼鏡蛇毒素V與醣胺素衍生雙醣的交互作用。心臟毒素有毒殺細胞的作用,且能造成大範圍的發炎反應與組織壞死。而醣胺素是心臟蛇毒的可能目標以標定欲攻擊的特定細胞。
    心臟毒素V為相當特異的同源心臟毒素之一,在指環I與指環II的變異使得它表現對於脂質以及醣胺素有較高的親合力,毒性變低,且至今未發現它真正的目標。我們的結果顯示,心臟毒素V與醣胺素的結合可能是經由指環II來結合,由蛋白NOE連結的訊號改變,推測其局部的構形改變,並由auto-docking與x-ray結晶的多餘電子密度,也初步證實了由指環II結合的結果。與先前的心臟蛇毒III與雙醣結合的結構比較,心臟毒素V擁有一個全新的結合位置。且心臟毒素V也會對於醣胺素上不同的硫化區域,表現不同的親合力。這些數據顯示了不同的心臟毒素對醣胺素有不同的結合位置,而肝素上的硫化區域,也對結合有決定性的影響,此結果也表示了心臟毒素V對醣的辨示能力。


    In this thesis,we are going to investigate the interaction of the heparinderived disaccharide with the cardiotoxin V (CTX A5). Cardiotoxinswill envenom the target cells and might cause severe necrosis and inflammation ,and glycosaminoglycan serve as potential target within
    the process. The distinct loop regions of CTX A5 differs by two inserts and mutations on the loop I and II make it exhibit much higher affinity to glycosaminoglycans and lipids than other cardiotoxin homologues.
    From our result of auto-docking and the preliminary x-ray structure suggest the binding of heparin derived disaccharide to CTX A5 is through loop II region and induces protein local conformation change. Compared
    with the former complex structure CTX A3, CTX A5 complex shows a novel binding site which is consist with the long-chain heparin SPR data. And the binding specificities is proven to depend on the sulfation motif of the disaccharide, thus suggest recognition of CTX A5 to
    glycosaminoglycans.

    1.緒論.....1 1.1心臟毒素簡介 1.2心臟毒素的作用模式 1.3醣胺素簡介 1.4研究目的 2.核磁共振探討蛋白與醣胺素的交互作用方法簡介.....13 2.1化學位移 2.2選擇激發實驗 2.3核磁共振在蛋白與醣胺素的研究 3.材料與方法.....17 3.1純化 3.2核磁共振樣品準備與儀器 3.3光譜處理與化學位移的分析 3.4一維選擇激發實驗 3.5模擬-自動嵌入 3.6擴散係數譜 4.結果.....25 4.1心臟毒素A5的性質 4.2結晶的條件 4.3心臟毒素A5與肝素結合的實驗 4.4不同硫化的雙醣 4.5選擇激發的實驗 4.6擴散係數譜 4.7遠紅外光光譜 4.8自動嵌入與結合位置 5.討論.....31 5.1pH值的對心臟毒素的作用 5.2pH對全硫化雙醣與蛋白結合模式的影響 5.3全硫化肝素雙醣的滴定 5.4不同的肝素雙醣對心臟毒素A5的親合力的改變 5.5局部構形的改變 5.6選擇激發的實驗 5.7自動嵌入與晶體的結構比較 6.結論.....41 7.附錄.....97 7.1中英對照表 7.2英文縮寫表 7.3胺基酸縮寫表 7.4溶液的作用 7.5心臟毒素A5的初步結構 參考文獻.....105

    [1] Wen-guey Wu. Cobra Cardiotoxin and Phospholipase A2 as GAGbinding
    Toxins:On the Path from Structure to Cardiotoxicity and
    Inflammation. TCM, 1998, 8, 270–278.
    [2] Zhang, L. ; Rozek, A. ; Hancock, R. E. Interaction of Cationic Antimicrobial
    Peptides with Model Membranes.J. Biol. Chem. 2001,
    276, 25714–35722.
    [3] Chien-Min Chiang, Shou-Lin Chang, Hai-jui Lin, and Wen-guey
    Wu. The Role of Acidic Amino Acid Residues in the Structural Stability
    of Snake Cardiotoxins. Biochemistry, 1996, 35, 9177–9186.
    [4] Yuh-Ju Sun; Wen-guey Wu; Chien-Min Chiang; A-Yen Hsin; and
    Chwan-Deng Hsiao. Crystal Structure of Cardiotoxin V from Taiwan
    Cobra Venom: pH-Dependent Conformational Change and
    a Novel Membrane-Binding Motif Identified in the Three-Finger
    Loops of P-Type Cardiotoxin. Biochemistry, 1997, 36, 2403–2413.
    [5] Rex S. and Schwarz, G. Quantitative Studies on the Melittin-
    Induced Leakage Mechanism of Lipid Vesicles. Biochemistry, 1998,
    37, 2336–2345.
    [6] Markin, V. and Albanes, J. P. Membrane Fusion: stalk model
    revisited.Biophys. J. 2002, 82, 639–712.
    [7] Souhei Mizuguchi; Toru Uyama; Hiroshi Kitagawa; Kazuko H.
    Nomura; Katsufumi Dejima; Keiko Gengyo-Ando; Shohei Mitani;
    Kazuyuki Sugahara; Kazuya Nomura. Chondroitin Proteoglycans
    Are Involved in Cell Division of Caenorhabditis Elegans. Nature
    2003, 423, 443–448.
    [8] Peter Teriete; Suneale Banerji; Martin Noble; Charles D. Blundell;;
    Alan J. Wright; Andrew R. Pickford; Edward Lowe; David J.
    Mahoney; Markku I. Tammi Jan D. Kahmann; Iain D. Campbell;
    Anthony J. Day;; and David G. Jackson. Structure of the Regulatory
    Hyaluronan Binding Domain in the Inflammatory Leukocyte
    Homing Receptor CD44. Molecular Cell, 2004, 13, 483–496.
    [9] V. S. Raghavendra Rao et al. “Conformation of Carbohydrates.”
    Published by harwood academic publishers. Available at Library
    of Academia Sinica, Taiwan.
    105
    [10] Himatkumar V. Patel; Alka A. Vyas; Kavita A. Vyas; Yi-Shiuan
    Liu; Chien-Min Chiang; Lang-Ming Chi; and Wen-guey Wu. Heparin
    and Heparan Sulfate Bind to Snake Cardiotoxin. J. Biol.
    Chem. 1997, 272, 1484–1492.
    [11] Shih-Che Sue; Jean-Robert Brisson; Siu-Cin Chang; Wei-Ning
    Huang; Shao-Chen Lee; Harold C. Jarrell; and Wen-guey Wu.
    Structures of Heparin-Derived Disaccharide Bound to Cobra Cardiotoxins:
    Context-Dependent Conformational Change of Heparin
    upon Binding to the Rigid Core of the Three-Fingered Toxin. Biochemistry,
    2001, 40, 10436–10446.
    [12] Dirk Henrichsen; Beat Ernst; John L. Magnani; Wei-Tong Wang;
    Bernd Meyer; Thomas Peters. Bioaffinity NMR Spectroscopy:
    Identification of an E-Selectin Antagonist in a Substance Mixture
    by Transfer NOE. Angew. Chem. Int. Ed. 1999, 38, 98–102.
    [13] Moriz Mayer; Bernd Meyer. Characterization of Ligand Binding by
    Saturation Transfer Difference NMR Spectroscopy. Angew. Chem.
    Int. Ed. 1999, 38, 1784–1788.
    [14] Diaz, M. Dolores ; Berger, Stefan. Studies of the Complexation of
    Sugars by Diffusion-ordered NMR Spectroscopy. Carbohydra. Res.
    2000, 329, 1–5.
    [15] Tomati, Umberto; Belardinelli, Monica; Galli, Emanuela; Iori,
    Valentina; Capitani, Donatella; et. al. NMR Characterization of
    the Polysaccharidic Fraction from Lentinula edodes Grown on
    Olive Mill Waste Waters. Carbohydra. Res. 2004, 339, 1129–1134.
    [16] Amanda S. Altieri, Denise P. Hinton, R. Andrew Byrd. Association
    of Biomolecular Systems via Pulsed Field Gradient NMR
    Self-Diffusion Measurements. J. Am. Chem. Soc. 1995, 117, 7566–
    7567.
    [17] Eads, C. D. ; Noda, I. Generalized Correlation NMR Spectroscopy.
    J. Am. Chem. Soc. 2002, 124, 1111–1118.
    [18] Hiroyuki Saito; Padmaja Dhanasekaran; David Nguyen; Faye
    Baldwin; Karl H.Weisgraber; SuzanneWehrli; Michael C. Phillips;
    and Sissel Lund-Katz. Characterization of the Heparin Binding
    Sites in Human Apolipoprotein E. J. Biol. Chem. 2003, 278,
    14782–14787.
    [19] Sachchidanand; Olivier Lequin; David Staunton; Barbara Mulloy;
    Mark J. Forster; Keiichi Yoshida; and Iain D. Campbell. Mapping
    the Heparin-binding Site on the 13-14F3 Fragment of Fibronectin.
    J. Biol. Chem. 2003, 277, 50629–50635.
    [20] Barjat; Herve; Morris; Gareth A. ; Swanson; Alistair G. A Three-
    Dimensional DOSY–HMQC Experiment for the High-Resolution
    Analysis of Complex Mixtures. J. Magn. Reson. 1998, 131, 131–
    138.
    106
    [21] Loening, Nikolaus M. ; Keeler, James; Morris, Gareth A. One-
    Dimensional DOSY. J. Magn. Reson. 2001, 153, 103–112.
    [22] Lucas, Laura H. ; Otto, William H. ; Larive, Cynthia K. The 2D-JDOSY
    Experiment: Resolving Diffusion Coefficients in Mixtures.
    J. Magn. Reson. 2002, 156, 138–145.
    [23] Jayalakshmi, V. ; Rama Krishna, N. CORCEMA refinement of the
    bound ligand conformation within the protein binding pocket in
    reversibly forming weak complexes using STD-NMR intensities. J.
    Magn. Reson. 2004, 168, 36–45.
    [24] Gozansky, Elliott K. ; Gorenstein, David G. DOSY-NOESY:
    Diffusion-Ordered NOESY. J. Magn. Reson. 1996, 111, 94–96.
    [25] Akiko Hori; Kazuhisa Kumazawa; Takahiro Kusukawa; Dillip Kumar
    Chand; Makoto Fujita; Shigeru Sakamoto; and Kentaro Yamaguchi.
    DOSY Study on Dynamic Catenation: Self-Assembly of a
    Catenane as a Meta-Stable Compound from Twelve Simple Components.
    Chem. Eur. J. 2001, 7, 4142–4149.
    [26] Patrick Groves; Martin Ohsten Rasmussen; M. Dolores Molero;
    Eric Samain; F. Javier Ca˜nada ; Hugues Driguez and Jes´us
    Jim´enez-Barbero; Diffusion Ordered Spectroscopy as a Complement
    to Size Exclusion Chromatography in Oligosaccharide Analysis.
    Glycobiology 2004, 14, 451–456.
    [27] Antonio H. Daranas; Jos´e J. Ferna´ndez; Ezequiel Q. Morales;
    Manuel Norte; and Jos´e A. Gavy´n. Self-Association of Okadaic
    Acid upon Complexation with Potassium Ion. J. Med. Chem.
    2004, 47, 10–13.
    [28] Fioroni, M. ; Diaz, M. D. ; Burger, K. ; Berger, S. Solvation
    Phenomena of a Tetrapeptide in Water/Trifluoroethanol and Water/
    Ethanol Mixtures: A Diffusion NMR, Intermolecular NOE,
    and Molecular Dynamics Study. J. Am. Chem. Soc. 2002, 124,
    7737–7744.
    [29] Rebecca Lever; Clive P. Page. Novel Drug Development Opportunities
    for Heparin. Nature Reviews Drug Discovery 2002, 1, 140–
    148.
    [30] Maurizio Pellecchia; Daniel S. Sem; Kurt W¨uthrich. NMR in Drug
    Discovery. Nature Reviews Drug Discovery 2002, 1, 211–219.
    [31] Jocelyne Fiaux; Eric B. Bertelsen; Arthur L. Horwich; Kurt
    W¨uthrich. NMR Analysis of A 900K GroEL-GroES Complex. Nature
    2002, 418, 207–211.
    [32] Sarah Tomlin Nuclear Polarization: More Spins for Protons. Nature
    2000, 403, 151.
    107
    [33] Bernd Meyer and Thomas Peters. NMR Spectroscopy Techniques
    for Screening and Identifying Ligand Binding to Protein Receptors.
    Angew. Chem. Int. Ed. 2003, 42, 864–890.
    [34] Ishan Capila; Robert J. Linhardt. Heparin-Protein Interactions.
    Angew. Chem. Int. Ed. 2002, 41, 390–412.
    [35] Mine, S. ; Yamazaki, T. ; Miyata, T. ; Hara, S. ; Kato, H. Structural
    Mechanism for Heparin-Binding of the Third Kunitz Domain
    of Human Tissue Factor Pathway Inhibitor. Biochemistry 2002, 41,
    78–85.
    [36] Johnson, M. A. ; Rotondo, A. ; Pinto, B. M. NMR Studies of the
    Antibody-Bound Conformation of a Carbohydrate-Mimetic Peptide.
    Biochemistry 2002, 41, 2149–2157.
    [37] Johnson, Margaret A. ; Pinto, B. Mario. NMR Spectroscopic and
    Molecular Modeling Studies of Protein-Carbohydrate and Protein-
    Peptide Interactions. Carbohydra. Res. 2004, 339, 907–928.
    [38] Chevalier, Franck; Lucas, Ricardo; Angulo, Jesus; Martin-Lomas,
    Manuel; Nieto, Pedro M. The Heparin–Ca2+ Interaction: the In-
    fluence of the O-sulfation Pattern on Binding. Carbohydra. Res.
    2004, 339, 975–983.
    [39] Colombo, Giorgio; Meli, Massimiliano; Canada, Javier; Asensio,
    Juan Luis; Jimenez-Barbero, Jes´us Toward the Understanding of
    the Structure and Dynamics of Protein-carbohydrate Interactions:
    Molecular Dynamics Studies of the Complexes Between Hevein and
    Oligosaccharidic Ligands. Carbohydra. Res. 2004, 339, 985–994.
    [40] Medek, A. ; Hajduk, P. J. ; Mack, J. ; Fesik, S. W. The Use
    of Differential Chemical Shifts for Determining the Binding Site
    Location and Orientation of Protein-Bound Ligands. J. Am. Chem.
    Soc. 2000, 122, 1241–1242.
    [41] Kuhn LA; Griffin JH; Fisher CL; Greengard JS; Bouma BN; Espana
    F; Tainer JA. Elucidating the Structural Chemistry of Glycosaminoglycan
    Recognition by Protein C Inhibitor. Proc. Natl.
    Acad. Sci. , 199, 21, 8506–8510.
    [42] Liu S; Zhou F; Hook M; Carson DD. A Heparin-Binding Synthetic
    Peptide of Heparin/Heparan Sulfate-Interacting Protein Modulates
    Blood Coagulation Activities. Proc. Natl. Acad. Sci. , 1997,
    94, 1739–1744.
    [43] Michael Gottschalk; Kandadai Venu; and Bertil Halle. Protein
    Self-Association in Solution: The Bovine Pancreatic Trypsin Inhibitor
    Decamer. Biophysical Journal 2003, 84, 3941–3958.
    108
    [44] Zuccaccia, C. ; Stahl, N. G. ; Macchioni, A. ; Chen, M. -C. ;
    Roberts, J. A. ; Marks, T. J. NOE and PGSE NMR Spectroscopic
    Studies of Solution Structure and Aggregation in Metallocenium
    Ion-Pairs. J. Am. Chem. Soc. 2004, 126, 1448–1464.
    [45] Hajduk, P. J. ; Mack, J. C. ; Olejniczak, E. T. ; Park, C. ; Dandliker,
    P. J. ; Beutel, B. A. SOS-NMR: A Saturation TransferNMRBased
    Method for Determining the Structures of Protein-Ligand
    Complexes. J. Am. Chem. Soc. 2004, 126, 2390–2398.
    [46] Markley, John L. ; Bax, Ad; Arata, Yoji; Hilbers, C. W. ; Kaptein,
    Robert; Sykes, Brian D. ; Wright, Peter E. and Kurt W¨uthrich.
    Recommendations for the Presentation of NMR Structures of Proteins
    and Nucleic Acids.
    [47] Ê CÉiŸƒ-DƒÖ A3Dòv“ý"Öµ‾Ó X-ray 3D
    !Z ÀM×çî=d, 2004.
    [48] Huang, C. C. , Couch, G. S. , Pettersen, E. F. , and Ferrin, T.
    E.`‘Chimera: An Extensible Molecular Modeling Application Constructed
    Using StandardComponents.“ Pacific Symposium on Biocomputing1996,
    1:724 . http://www.cgl.ucsf.edu/chimera.
    [49] T. D. Goddard and D. G. Kneller, SPARKY 3, University of California,
    San Francisco.
    [50] Peter G¨untert, Christian Mumenthaler and Torsten Herrmann.
    DYANA Manual. Available at web site:
    http://gwagner.med.harvard.edu/nmr/wwwsoftlib/cyana/DyanaManual.pdf
    [51] Using ”Sparky” to evaluate volumes of peaks in 2-D spectra.
    http://www.cm.utexas.edu/hoffman/sparkyintegrate.pdf.
    http://www.cm.utexas.edu/hoffman
    [52] Herrmann, Torsten; G¨untert, Peter; W¨uthrich. Protein NMR
    Structure Determination with Automated NOE Assignment Using
    the New Software CANDID and the Torsion Angle Dynamics
    Algorithm DYANA. J. Mol. Biol. 2002, 319, 209–227.
    [53] Enrico Morelli. 2004. http://www.cerm.unifi.it/Sparky/extension.html.
    [54] ÏÏf]t, www.wjxy.edu.cn/ jpkc/wl/sy/part0/sect03.doc.
    [55] ˝2p, 2004, ÀMÞ·çÍÛ±4õð
    [56] ±¬ |4°!|Ê-DƒÖ!Z£º4Š?,5iH ÀM×ç²
    =d, 1996.
    [57] Chien-Min Chian, Kun-Yi Chien, Hai-jui Lin, Ji-Fu Lin, Hsien-
    Chi Yeh, Pei-li Ho, and Wen-gueyWu Conformational Change and
    Inactivation of Membrane Phospholipid-Related Activity of Cardiotoxin
    V from Taiwan Cobra Venom at Acidic pH. Biochemistry
    , 1996, 35, 9167–9176
    109
    [58] Chien-Min Chiang; Kun-Yi Chien; Hai-jui Lin; Ji-Fu Lin;
    Hsien-Chi Yeh; Pei-li Ho; and Wen-guey Wu. Conformational
    Change and Inactivation of Membrane Phospholipid-Related Activity
    of Cardiotoxin V from Taiwan Cobra Venom at Acidic
    pH.Biochemistry, 1996,35, 9167–9176.
    [59] Arun K. Singhal; Kun-Yi Chien; Wen-guey Wu ; and Gordon S
    . Rule. Solution Structure of Cardiotoxin V from Naja naja atra.
    Biochemistry, 1993, 32, 8036–8044.
    [60] Kuschert; G. S. V. ; Coulin, F. ; Power, C. A. ; Proudfoot, A.
    E. I. ; Hubbard, R. E. ; Hoogewerf,A. J. ; Wells, T. N. C. .Glycosaminoglycans
    Interact Selectively with Chemokines and Modulate
    Receptor Binding and Cellular Responses. Biochemistry 1999,
    38, 12959–12968.
    [61] Hakansson, S. ; Caffrey, M. Structural and Dynamic Properties
    of the HIV-1 Tat Transduction Domain in the Free and Heparin-
    Bound States. Biochemistry 2003, 42, 8999–9006.
    [62] Kumar, R. ; Bose, P. Development and Experimental Validation of
    the Model of a Continuous-Flow Countercurrent Ozone Contactor.
    Biochemistry 2004, 43, 1418–1429.
    [63] Giragossian, C. ; Schaschke, N. ; Moroder, L. ; Mierke, D. F. Conformational
    and Molecular Modeling Studies of β-Cyclodextrin-
    Heptagastrin and the Third Extracellular Loopof the Cholecystokinin
    2 Receptor. Biochemistry 2004, 43, 2724–2731.
    [64] Bhunia, Anirban; Jayalakshmi, V. ; Benie, Andrew J. ; Schuster,
    Oliver; Kelm, Sorge; Rama Krishna, N. Carbohydra. Res. 2004,
    339, 259–267.
    [65] Johnson, M. A. ; Jensen, M. T. ; Svensson, B. ; Pinto, B. M.
    Selection of a High-Energy Bioactive Conformation of a Sulfonium-
    Ion Glycosidase Inhibitor by the Enzyme Glucoamylase G2. J. Am.
    Chem. Soc. 2003, 125, 5663–5670.
    [66] Francis C. Peterson; E. Sonay Elgin; Timothy J. Nelson; Fuming
    Zhang; Theresa J. Hoeger; Robert J. Linhardt; and Brian F. Volkman.
    Identification and Characterization of a Glycosaminoglycan
    Recognition Element of the C Chemokine Lymphotactin. J. Biol.
    Chem. 2004, 279, 12598–12604.
    [67] Farhad Forouhar; Wei-Ning Huang; Jyung-Hurng Liu; Kun-Yi
    Chien; Wen-guey Wu; and Chwan-Deng Hsiao. Structural Basis
    of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol.
    Chem. 2003, 278, 21980–21988. J. Mol. Biol. 1998, 280, 933–52.
    [68] Doreleijers, Jurgen F. ; Rullmann, Johan A. C. ; Kaptein, Robert.
    Quality Assessment of NMR Structures: A Statistical Survey. J.
    Mol. Biol. 1998, 281, 149–164.
    110
    [69] Scheuermann, Thomas H. ; Lolis, Elias; Hodsdon, Michael E.
    Tertiary Structure of Thiopurine Methyltransferase from Pseudomonas
    syringae, a Bacterial Orthologue of a Polymorphic, Drug-
    Metabolizing Enzyme. J. Mol. Biol. 2003, 333, 573–585.
    [70] London, Robert E. Theoretical Analysis of the Inter-Ligand Overhauser
    Effect: A New Approach for Mapping Structural Relationships
    of Macromolecular Ligands. J. Magn. Reson. 1999, 141, 301–
    311.
    [71] Dixon, Ann M. ; Widmalm, Goran; Bull, T. E. Modified GOESY
    in the Analysis of Disaccharide Conformation. J. Magn. Reson.
    2000, 147, 266–272.
    [72] Guido Serini; Donatella Valdembri; Sara Zanivan; GiuliaMorterra;
    Constanze Burkhardt;Francesca Caccavari; Luca Zammataro;
    Luca Primo; Luca Tamagnone; Malcolm Logan; Marc Tessier-
    Lavigne;Masahiko Taniguchi; Andreas W. Pchel; Federico Bussolino.
    Class 3 Semaphorins Control Vascular Morphogenesis by
    Inhibiting Integrin Function. Nature 2003, 424, 391–397.
    [73] Kevin Pethe; Sylvie Alonso; Franck Biet; Giovanni Delogu;
    Michael J. Brennan; Camille Locht; Franco D. Menozzi. The
    Heparin-Binding Haemagglutinin of M. Tuberculosis Is Required
    for Extrapulmonary Dissemination. Nature 2001, 412, 190–194.
    [74] Federica Castellani; Barth van Rossum; Annette Diehl; Mario
    Schubert; Kristina Rehbein; Hartmut Oschkinat. Structure of A
    Protein Determined by Solid-State Magic-Angle-Spinning NMR
    Spectroscopy. Nature 2002, 420, 98–102.
    [75] David G. Morris; Xiaozhu Huang; Naftali Kaminski; Yanli Wang;
    Steven D. Shapiro; Gregory Dolganov;Adam Glick; Dean Sheppard.
    Loss of Integrin αvβ6-Mediated TGF-β Activation Causes
    Mmp12-Dependent Emphysema. Nature 2003, 422, 169–173.
    [76] Mario Halic; Thomas Becker; Martin R. Pool; Christian M. T.
    Spahn; Robert A. Grassucci; Joachim Frank; Roland Beckmann.
    Structure of the Signal Recognition Particle Interacting with the
    Elongation-Arrested Ribosome. Nature 2004, 427, 808–814.
    [77] Robert Langer; David A. Tirrell. Designing Materials for Biology
    and Medicine. Nature 2004, 428, 487–492.
    [78] Jamie Rossjohn; Roberto Cappai; Susanne C. Feil; Anna Henry;
    William J. McKinstry;Denise Galatis; Lars Hesse; Gerd Multhaup;
    Konrad Beyreuther; Colin L. Masters; Michael W. Parker. Crystal
    Structure of the N-terminal, Growth Factor-Like Domain of
    Alzheimer Amyloid Precursor Protein. Nature Structural Biology
    1999, 6, 327–331.
    111
    [79] JianFeng Chen; Azucena Salas; Timothy A Springer. Bistable Regulation
    of Integrin Adhesiveness by Bipolar Metal Ion Cluster. Nature
    Structural Biology 2003, 10, 995–1001.
    [80] Natalia Beglova; Stephen C. Blacklow; Junichi Takagi; Timothy
    A. Springer. Cysteine-Rich Module Structure Reveals a Fulcrum
    for Integrin Rearrangement upon Activation. Nature Structural
    Biology 2003, 9, 282–287.
    [81] Wei-Lien Chuang; Marie Dvorak Christ; and Dallas L. Rabenstein.
    Determination of the Primary Structures of Heparin- and
    Heparan Sulfate-Derived Oligosaccharides Using Band-Selective
    Homonuclear-Decoupled Two-Dimensional 1H NMR Experiments.
    Anal. Chem. 2001, 73, 2310–2316
    [82] Jonathan A. Lukin and Chien Ho. The Structure-Function Relationship
    of Hemoglobin in Solution at Atomic Resolution. Chem.
    Rev. 2004, 104, 1219–1230.
    [83] Katsuhiko Minoura; Tian-Ming Yao; Koji Tomoo; Miho Sumida;
    Masahiro Sasaki; Taizo Taniguchi; and Toshimasa Ishida. Different
    Associational and Conformational Behaviors between the Second
    and Third Repeat Fragments in the Tau Microtubule-Binding Domain.
    Eur. J. Biochem. 2004, 271, 545–552.
    [84] Maurizio Pellecchia. ; David Meininger; Qing Dong; Edcon Chang;
    Rick Jack & Daniel S. Sem. NMR-Based Structural Characterization
    of Large Protein-Ligand Interactions. Journal of Biomolecular
    NMR, 2002, 22, 165–173.
    [85] Jong W. Yu; Jeannine M. Mendrola; Anjon Audhya; Shaneen
    Singh; David Keleti; Daryll B. DeWald; Diana Murray; Scott D.
    Emr; and Mark A. Lemmon. Genome-Wide Analysis of Membrane
    Targeting by S. cerevisiae Pleckstrin Homology Domains. Molecular
    Cell, 2004, 14, 677–688,.
    [86] Peter G¨untert. Automatic NMR Structure Calculation. NMR
    Workshop, 2004 in Academia Sinica, Taiwan ,powerpoint to pdf
    file.
    [87] Chi-Fon Chang. Overview of Facility Software for BiomolecularNMR.
    NMR Workshop, 2004 in Academia Sinica, Taiwan ,powerpoint
    to pdf file.
    [88] Christian Blouin; Davin Butt; Andrew James Roger. Rapid Evolution
    in Conformational Space: A Study of Loop Regions in A
    Ubiquitous GTP Binding Domain. Protein Science, 2004, 13, 608–
    616.
    [89] Suzanne B. Shuker; Philip J. Hajduk; Robert P. Meadows; Stephen
    W. Fesik. Discovering High-Affinity Ligands for Proteins: SAR by
    NMR. Science, 274, 1531–1534.
    112
    [90] Luigi Calzolai; Dominikus A. Lysek; Peter G¨untert; Christine von
    Schroetter; Roland Riek; Ralph Zahn; and Kurt W¨uthrich. NMR
    Structures of Three Single-Residue Variants of the Human Prion
    Protein. Proc. Natl. Acad. Sci. , 2000, 97, 8340–8345.
    [91] Lixin Ma; Christopher T. Jones; Teresa D. Groesch; Richard J.
    Kuhn; and Carol Beth Post. Solution Structure of Dengue Virus
    Capsid Protein Reveals Another Fold. Proc. Natl. Acad. Sci. , 2004,
    101, 3414–3419.
    [92] S´ebastien J. F. Vincent; Catherine Zwahlen; Carol Beth Post;
    John W. Burgner; and Geoffrey Bodenhausen. The Conformation
    of NAD+ Bound to Lactate Dehydrogenase Determined by
    Nuclear Magnetic Resonance with Suppression of Spin Diffusion.
    Proc. Natl. Acad. Sci. , 1997, 94, 4383–4388.
    [93] Robert McDermott;; Andreas H. Trabesinger; Michael M¨uck; Erwin
    L. Hahn; Alexander Pines; John Clarke. Liquid-State NMR
    and Scalar Couplings in Microtesla Magnetic Fields. Science, 2002,
    295, 2247–2249.
    [94] John Cavanagh et al. “Protein NMR Spectroscopy” Published by
    Academic Press. Available at NTHU Library.
    [95] Kurt W¨uthrich. “NMR of Proteins and Nucleic Acids” Published
    by Wiley-Interscience. Available at NTHU Library.
    [96] Ray Freeman. “A Handbook of Nuclear Magnetic Resonance” 2nd
    Edition. Published by Longman. Available at NTHU Library.
    [97] Peter G¨untert et al. “Workshop oh High Troughput NMR Structure
    Determination of Proteins in the Post-Genomic Era” Workshop
    data & files. Available at IBMS of Academia Sinica, Taiwan.
    [98] Chien-Min Chiang; Shou-Lin Chang; Hai-jui Lin; and Wen-guey
    Wu.The Role of Acidic Amino Acid Residues in the Structural
    Stability of Snake Cardiotoxins.Biochemistry, 1996, 35, 9177–9186.
    [99] Shih-Che Sue; P. K. Rajan; Ting-Shou Chen; Chang-Huain Hsieh;
    and Wen-guey Wu. Action of Taiwan Cobra Cardiotoxin on Membranes:
    Binding Modes of a β-Sheet Polypeptide with Phosphatidylcholine
    Bilayers. Biochemistry, 1997, 36, 9826–9836.
    [100] Kavita A. Vyas; Himatkumar V. Patel; Alka A. Vyas; and Wenguey
    Wu. Glycosaminoglycans Bind to Homologous Cardiotoxins
    with Different Specificity. Biochemistry, 1998, 37, 4527–4534.
    [101] Shih-Che Sue; Harold C. Jarrell; Jean-Robert Brisson; and Wenguey
    Wu. Dynamic Characterization of the Water Binding Loop
    in the P-Type Cardiotoxin: Implication for the Role of the Bound
    Water Molecule. Biochemistry, 2001, 40, 12782–12794.
    113
    [102] Chung-Chuan Lo; Jui-Hung Hsu; You-Cheng Sheu; Chein-Min
    Chiang; Wen-guey Wu; Wunshain Fann; and Pei-Hsi Tsao. Effect
    of D57N Mutation on Membrane Activity and Molecular Unfolding
    of Cobra Cardiotoxin. Biophysical Journal, 1998, 75, 2382–2388.
    [103] Yi-Hung Lin; Shao-Chen Lee; Payne Y. Chang; P. K. Rajan; Shih-
    Che Sue; Wen-guey Wu. Heparin Binding to Cobra Basic Phospholipase
    A2 Depends on Heparin Chain Length and Amino Acid
    Specificity. FEBS Letters, 1999, 453, 395–399.
    [104] Kun-Yi Chien; Wai-Ning Huang; Jau-Hua Jean; and Wen-guey
    Wu. Fusion of Sphingomyelin Vesicles Induced by Proteins from
    Taiwan Cobra (Naja naja atra) Venom. J. Biol. Chem. , 1991,
    266, 3252–3259.
    [105] Kun-Yi Chien; Chien-Min Chian; You-Cheng Hseu; Alka A. Vyas;
    Gordon S . Rule; and Wen-guey Wu.Two Distinct Types of Cardiotoxin
    as Revealed by the Structure and Activity Relationship
    of Their Interaction with Zwitterionic Phospholipid Dispersions.
    J. Biol. Chem. , 1994, 269, 14473–14483.
    [106] Alka A. Vyas; Jiann-Jong Pan; Himatkumar V. Patel; Kavita A.
    Vyas; Chien-Min Chiang; You-Cheng Sheu; Jenn-Kang Hwang;
    and Wen-guey Wu. Analysis of Binding of Cobra Cardiotoxins to
    Heparin Reveals a New b-Sheet Heparin-binding Structural Motif.
    J. Biol. Chem. , 1997, 272, 9661–9670.
    [107] Shih-Che Sue; Kun-Yi Chien; Wei-Ning Huang; Joseph K. Abraham;
    Kuan-Ming Chen; and Wen-guey Wu. Heparin Binding Stabilizes
    the Membrane-bound Form of Cobra Cardiotoxin. J. Biol.
    Chem. , 2002, 277, 2666–2673.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE