簡易檢索 / 詳目顯示

研究生: 周志政
Jyh-Jeng Chou
論文名稱: 量化奈米技術下額外佈局填充金屬所產生的寄生效應
Quantification of Impact by Nanometer Dummy Metal Fills
指導教授: 張克正
Keh-Jeng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 68
中文關鍵詞: 額外佈局圖型填充奈米製程雜訊干擾電容抽取電路延遲可行性設計化學機械研磨
外文關鍵詞: Dummy Metal, Nanometer Process, Crosstalk, Capacitance Extraction, Circuit Delay, DFM, CMP
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的CMOS製程裡, 八層甚至是更多的金屬連接層是很常見的情形. 於是將層的表面予以平坦化的技術已經變得相當重要. 化學機械研磨(CMP)是可以達到此一平坦化目的一項技術並且為了達到更好的平坦化效果和更高的可製造性. 我們一併使用了dummy metal填充這項技術來達到更佳的化學機械研磨效果. 在做實體電路布局時,此兩項技術都已經廣泛的被業界所採用. 隨著製程不斷不斷的縮小, 因為化學機械研磨這項技術所造成的金屬碟化效應(dishing)和金屬層侵蝕效應(erosion)使得dummy metal填充更顯重要. 但同時,dummy metal填充也造成了額外的寄生效應使得金屬連接線之間的電容因此變大. 所以dummy metal填充所造成的這些寄生效應是需要被準確的計算出來並且在設計電路的過程之中把這些效應考慮進去. 我們必須將dummy metal填充所造成的這些寄生效應加以量化. 而且也需要有更多針對這些效應的研究來幫助我們更了解這些寄生效應的問題.

    在這篇論文裡, 首先我們會先概述dummy metal相關的知識. 接下來我們會針對一些已經發表過的相關文章作探討. 在分析過這些文章的優劣以後, 我們將會提出一個新的方法來量化dummy metal填充對電路所產生的寄生效應, 包含了電容, 效能及雜訊干擾…等等. 接著, 我們把我們的實驗所產生的數據加以分析並且得到了一些結論. 這個方法和這些結論能幫助設計電路的人預先並且正確的估計dummy metal填充對整個電路的影響. 最後我們同時設計了一個可以將這些量化的流程自動化執行的軟體. 藉由我們的軟體, 使用者可以針對他們個人的需求去設計他們所需要的測試結構 (例如:線長, 線寬, 線距, 哪一種製程…等等) 並且可以在最短的時間之內就可以得到因dummy metal填充所造成的這些寄生效應的大小.


    In modern CMOS processes, eight or more interconnect layers are commonplace so that techniques to planarize the surface have become mandatory. Chemical-mechanical polishing (CMP) step is a technique to achieve planarization and dummy metal fills have been widely applied by foundries to VLSI physical layouts for better CMP uniformity and higher manufacturability. As the size getting smaller and smaller, dummy metal fills remain importantly because of dishing and erosion that are caused by CMP. But at the same time, dummy metal fills also cause extra parasitic effects which force the capacitance between interconnects becomes larger. Thus, the impact by dummy metal fills in circuit needs to be modeled accurately and be taken into account in the design flow. It is important to quantify these problems caused by dummy fills and need more researches for better understanding them.

    In this paper, we will first overview the domain knowledge about dummy metal. Then we will review the related researches in this domain. After that, we’ll present a new and different method (structure) to quantify the impact by dummy metal fills in capacitance, on performance and crosstalk noise. We also analyze the experiment data from our method and make some conclusions. This can help designers to estimate the dummy impact accurately in advance. At last, we also design a software to run the flow automatically. With the software, users can generate the test structures according to their requests (for example: structure length, structure width, structure space and VLSI manufacturing processes) and quantify the parasitic impacts by dummy metal fills in a short time.

    Abstract………………. I 中文摘要……………………………………………………………………………...II Contents………………………………………………………………………………III List of Figures IV List of Tables V Chapter 1 Introduction 1 Chapter 2 Background Knowledge and Previous Work 4 2.1 Raphael 4 2.2 CLEVER 4 2.3 Star-RCXT 5 2.4 Test Structure 6 2.5 CIF format 7 2.6 Previous Work 7 2.7 Tools Verification 9 Chapter 3 Theory and Method 13 3.1 Theory of Floating Conductors 13 3.2 Issue1: Whole Chip View 15 3.3 Issue2: Realistic Problem 16 3.4 Test Structures in Our Research 17 3.5 Software Flow 19 Chapter 4 Experiment Result 21 4.1 180-nm Experiment Result 21 4.2 130-nm Experiment Result 28 4.3 90-nm Experiment Result 31 4.4 Software and Hardware Requirement 36 Chapter 5 Conclusion 37 Chapter 6 Future Work 39 References……………………………………………………………………………40 Appendix A Experiment Result in Other Cases 42 Appendix B Verification Data 53 Appendix C Crosstalk Analysis 55

    [1] Keh-Jeng Chang et al., “Accurate 3-D Capacitance Test and Characterization of Dummy Metal Fills to Achieve Design for Manufacturability”,2005 CMP-MIC Conference, February 2005.
    [2] David C.H. Lyu, “Accurate Applications of Electromagnetic Field Simulation Software for Nanometer Interconnect Capacitance Verification”, M.S. Thesis, National Tsing-Hua University, June 2005.
    [3] Puneet Gupta et al., “Closing the Loop in Interconnect Analyses and Optimization: CMP Fill, Lithography and Timing”, Blaze DFM, Inc, Oct. 2005.
    [4] Lei He et al., “Design of Integrated-Circuit Interconnects with Accurate
    Modeling of Chemical-Mechanical Planarization”, 2005 Proceesings- SPIE the International Society for Optical Engineering
    [5] Andrew B. Kahng et al., “Study of Floating Fill Impact on Interconnect Capacitance”, 2006 Quality Electronic Design, ISQED’06, Mar. 2006.
    [6] Narain D. Arora et al., “Atto-Farad Measurement and Modeling of On-Chip Coupling capacitance”, 2004 IEEE.
    [7] Hung-Chi Li, “Nanometer Interconnect Test Structure Generation Software for Comprehensive Process Variation Modeling for SoC Designs”, M.S. Thesis, National Tsing-Hua University, June 2005.
    [8] Ming-Huei Tsai, “Cell-based & Modulized Nanometer Interconnect Test Structure Generator for BEoL”, M.S. Thesis, National Tsing-Hua University, Oct. 2006.
    [9] Kuan-Chi Shih, “Electromagnetic Field Simulation Software Based Nanometer Resistance Analysis for Supporting Parametric Testing and SoC Designs”, M.S. Thesis, National Tsing-Hua University, Oct. 2006.
    [10] Silvaco Inc., “Clever User’s Manual” version Version 3.6.16.R, February 2004.
    [11] Synopsys Inc., “Raphael Reference Manual” version 2003.09, Mountail View, California, September 2003.
    [12] Synopsys Inc., “Star-RCXT User Guide” Version X-2006.03, June 2006
    [13] Ti-Hsu Chen, “Statistical Analysis and Corner Modeling of Nanometer Interconnect Technology for Process Variation Modeling”, M.S. Thesis, National Tsing-Hua University, Oct. 2006.
    [14] Chi-Yuan Huang, “A New Verification Strategy to rigorously test two pieces of electromagnetic field simulation software”, M.S. Thesis, National Tsing-Hua University, Jan. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE