研究生: |
童國豪 Tung, Kuo-Hao |
---|---|
論文名稱: |
新式細菌檢測試劑開發 New chemical reagents for bacteria detection |
指導教授: |
鄭兆珉
Cheng, Chao-Min |
口試委員: |
魯才德
Lu, Tsai-Te 李怡姿 Lee, Yi-Tzu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 大腸桿菌 、金黃色葡萄球菌 、細菌檢測 、MTT 、PMS 、伊紅Y 、甲基藍 、敗血症 |
外文關鍵詞: | Escherichia coli, Staphylococcus aureus, Bacterial detection, MTT, PMS, EosinY, Methylene blue, Sepsis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌感染不論在醫院、自然環境中一直都是威脅人類身體健康的議題,然而在臨床上細菌感染的即時診斷是困難的,即使科學家不斷各種抗生素來治療細菌感染,但敗血症仍然是全球主要死因之一。現有細菌檢測主要可分成兩大類:(1)傳統培養基檢測法:細菌經過特殊培養基培養1~2天後觀察菌落顏色變化。(2)免疫分析法:利用抗體或抗原進行相關檢測,可獲得高專一性之檢測結果。目前細菌檢測上尚未具有低成本、簡單操作、不需額外設備協助之快速檢測方法,以即時提供樣品中細菌濃度之資訊。在本研究我們選擇大腸桿菌及金黃色葡萄球菌作為偵測細菌,大腸桿菌為自然環境中常見的指標性細菌,而金黃色葡萄球菌經常是造成細菌感染的原因。本研究利用MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 及PMS (Phenazine methosulfate)與細菌內酵素產生氧化還原反應,並添加氫氧化鈉增強反應呈色效果。實驗結果顯示,細菌與反應試劑在595 nm波長下隨著細菌濃度越高有較高的吸收度。我們也利用伊紅Y-甲基藍複合染劑(Eosin Y-Methylene blue)及Triton X-100來分辨不同濃度的細菌,在菌液中依序加入添加Triton X-100之伊紅Y溶液、亞甲基藍染劑,根據細菌成分化學性質不同,細菌細胞質透過離子鍵與酸性染料伊紅Y結合呈粉紅色,細菌核酸透過離子鍵與鹼性染料亞甲基藍結合成藍紫色。隨著樣本中細菌量越多被染成藍紫色的核酸越多,因此,菌量越多顏色越深,反之菌量越少則顏色越淡。
Bacterial infections have been a threat to human health in hospitals and the natural environment. However, immediate diagnosis of bacterial infections is difficult. Even if various antibiotics have been administrated to treat bacterial infections, sepsis is still one of the major causes of death worldwide. Nowadays, the bacteria detection methods can be mainly divided into two categories: (1) traditional medium detection method: bacteria are cultured in a special medium for 1 to 2 days to observe the colony color change. (2) Immunoassay: The detection of antibodies or antigens can be used to obtain highly specific test results. At present, there is no rapid detection method for low-cost, simple operation and no additional equipment requirement for bacterial detection. In an addition, current methods are unable to provide instant information about the concentration of bacteria in the sample. In our study, we chose Escherichia coli and Staphylococcus aureus as the materials. We used MTT - PMS reagent to produce redox with enzymes in bacterium, and add Sodium hydroxide to enhance the color of the reaction. The absorbance value in 595 nm increases with the increasing concentration of bacteria. We use Eosin Y - Methylene blue reagent to identify different concentrations of bacteria.
1. G. S. Martin, D. M. Mannino, S. Eaton, M. Moss, The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348, 1546-1554 (2003).
2. D. C. Angus et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29, 1303-1310 (2001).
3. W. H. Organization, "Removing obstacles to healthy development: report on infectious diseases,"(Geneva: World Health Organization, 1999).
4. R. A. Balk, R. C. Bone, The septic syndrome. Definition and clinical implications. Crit Care Clin5, 1-8 (1989).
5. S. M. Ayres, SCCM's new horizons conference on sepsis and septic shock. Crit Care Med 13, 864-866 (1985).
6. L. Hall-Stoodley, J. W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108 (2004).
7. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, Microbial biofilms. Annu Rev Microbiol 49, 711-745 (1995).
8. tamm, Walter EHooton, Thomas M. Management of urinary tract infections in adults. New England journal of medicine 18. 329, 1328-1334(1993)
9. Amdekar, SarikaSingh, Vinod Singh, Desh Deepak. Probiotic therapy: immunomodulating approach toward urinary tract infection. Current microbiology 5, 63, 484 (2011)
10. O. Lazcka, F. J. Del Campo, F. X. Munoz, Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and bioelectronics 22, 1205-1217 (2007).
11. S. Ishii, M. J. Sadowsky, Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments 23, 101-108 (2008).
12. A. Giwa, A. Ogunribido, The applications of membrane operations in the textile industry: a review. British Journal of Applied Science & Technology 2, 296 (2012).
13. A. Rompré, P. Servais, J. Baudart, M.-R. De-Roubin, P. Laurent, Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods 49, 31-54 (2002).
14. K. Chotinantakul, W. Suginta, A. Schulte, Advanced Amperometric Respiration Assay for Antimicrobial Susceptibility Testing. Analytical chemistry 86, 10315-10322 (2014).
15. C. Ramakers, J. M. Ruijter, R. H. L. Deprez, A. F. Moorman, Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience letters 339, 62-66 (2003).
16. C.-M. Shih et al., based ELISA to rapidly detect Escherichia coli. Talanta 145, 2-5 (2015).
17. R. C. Bartlett, M. Mazens, B. Greenfield, Acceleration of tetrazolium reduction by bacteria. Journal of clinical microbiology 3, 327-329 (1976).
18. R. Cedillo-Rivera, A. Ramirez, O. Munoz, A rapid colorimetric assay with the tetrazolium salt MTT and phenazine methosulfate (PMS) for viability of Entamoeba histolytica. Archives of medical research 23, 59-61 (1992).
19. T. Tsukatani et al., Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. Journal of Microbiological Methods 75, 109-116 (2008).
20. C. McNulty et al., New spiral bacterium in gastric mucosa. Journal of Clinical Pathology 42, 585-591 (1989).
21. G. Kronvall, E. Myhre, Differential staining of bacteria in clinical specimens using acridine orange buffered at low pH. Acta Pathologica Microbiologica Scandinavica Section B Microbiology 85, 249-254 (1977).
22. I. Di Lernia, C. Schiraldi, M. Generoso, M. De Rosa, Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 6, 341-347 (2002).
23. T. Tsuchido, I. Aoki, M. Takano, Interaction of the fluorescent dye lN-phenylnaphthylamine with Escherichia coli cells during heat stress and recovery from heat stress. Microbiology 135, 1941-1947 (1989).
24. T. Homma, T. Nakae, Effects of cations on the outer membrane permeability of Escherichia coli. The Tokai journal of experimental and clinical medicine 7, 171-175 (1982).
25. M. Vaara, Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. Journal of bacteriology 148, 426-434 (1981).
26. B. Li et al., Glycine and Triton X-100 enhanced secretion of recombinant α-CGTase mediated by OmpA signal peptide in Escherichia coli. Biotechnology and bioprocess engineering 17, 1128-1134 (2012).
27. H.-L. Alakomi et al., Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66, 2001-2005 (2000).
28. L. Leive, The barrier function of the Gram‐negative envelope. Annals of the New York Academy of Sciences 235, 109-129 (1974).
29. G. J. Hucker, H. J. Conn, Methods of Gram staining. (1923).
30. S. Josset, N. Keller, M.-C. Lett, M. J. Ledoux, V. Keller, Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews 37, 744-755 (2008).
31. A. S. Shashkov et al., A novel type of teichoic acid from the cell wall of Bacillus subtilis VKM B-762. Carbohydrate research 346, 1173-1177 (2011).
32. S. Sedov, N. Belogurova, S. Shipovskov, A. Levashov, P. Levashov, Lysis of Escherichia coli cells by lysozyme: discrimination between adsorption and enzyme action. Colloids and Surfaces B: Biointerfaces 88, 131-133 (2011).
33. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science 275, 177-182 (2004).
34. W. P. Hamilton, M. Kim, E. L. Thackston, Comparison of commercially available Escherichia coli enumeration tests: Implications for attaining water quality standards. Water Research 39, 4869-4878 (2005).
35. N. Mitik-Dineva et al., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Current microbiology 58, 268-273 (2009).
36. J. S. Kavanaugh, A. R. Horswill, Impact of environmental cues on staphylococcal quorum sensing and biofilm development. Journal of Biological Chemistry 291, 12556-12564 (2016).
37. R. V. Rasmussen, V. G. Fowler Jr, R. Skov, N. E. Bruun, Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future microbiology 6, 43-56 (2011).
38. L. Simon, F. Gauvin, D. K. Amre, P. Saint-Louis, J. Lacroix, Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clinical infectious diseases 39, 206-217 (2004).
39. R. C. Bone et al., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101, 1644-1655 (1992).
40. J. W. Costerton, P. S. Stewart, E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322 (1999).
41. J. Lin, A. Ganesh, Water quality indicators: bacteria, coliphages, enteric viruses. International journal of environmental health research 23, 484-506 (2013).
42. E. Fricker, K. Illingworth, C. Fricker, Use of two formulations of Colilert and QuantiTray™ for assessment of the bacteriological quality of water. Water research 31, 2495-2499 (1997).
43. D. Ratkowsky, J. Olley, T. McMeekin, A. Ball, Relationship between temperature and growth rate of bacterial cultures. Journal of bacteriology 149, 1-5 (1982).
44. E. Powell, Growth rate and generation time of bacteria, with special reference to continuous culture. Microbiology 15, 492-511 (1956).
45. J. Monod, The growth of bacterial cultures. Annual review of microbiology 3, 371-394 (1949).
46. A. M. Wang, M. V. Doyle, D. F. Mark, Quantitation of mRNA by the polymerase chain reaction. Proceedings of the National Academy of Sciences 86, 9717-9721 (1989).
47. J. Van Meerloo, G. J. Kaspers, J. Cloos, in Cancer cell culture. (Springer, 2011), pp. 237-245.
48. D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation. Journal of immunological methods 94, 57-63 (1986).