簡易檢索 / 詳目顯示

研究生: 呂俊賢
Lu Chun-Hsien
論文名稱: 濕式球磨法製備鑽石銀基複合材料之研究
Study on Properties of Diamond/Silver Composites Prepared by Wet-Ball-Milling Method
指導教授: 林樹均
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 86
中文關鍵詞: 金屬基複合材料鑽石熱傳導性質
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以不同大小、不同體積分率之原生鑽石(Saw Diamond)製作鑽石銀基複材;以濕式球磨法將鑽石與銀兩種粉末進行混合分散,接著採用大氣熱壓法,在600 ℃、500 MPa或1000 MPa壓力下熱壓30分鐘後製成試片,量測其熱傳導、熱膨脹、硬度等性質,並觀察其熱性質變化趨勢,評估此複合材料在電子構裝散熱材的應用潛力。
    Diamond/Ag 複材截面於SEM下可看到鑽石均勻分佈之圖像,鑽石本身無碎裂或剝離之情形出現。而在銀添加30 vol%之100 ~ 120 μm鑽石之複材中,可得到熱傳導係數為475 W/m•K,明顯比純銀(410 W/m•K)高出許多。
    熱傳導性質方面,在20 vol%複材中,可發現隨著鑽石顆粒尺寸變大,總表面積減少,熱傳導係數上升。而鑽石含量增加,複材熱傳導係數下降,推測與緻密度較差有關。熱膨脹係數方面,隨著鑽石體積分率上升,熱膨脹係數並無明顯下降的趨勢,應與界面無擴散鍵結(Diffusion Bonding)且原生鑽石較碎裂鑽石表面平滑無機械鍵結(Mechanical Interlocking)有關。硬度方面,則隨著鑽石體積分率上升,鑽石提供散佈強化的作用而上升。
    整體而言,以此法製造鑽石銀基複合材,製程設備便宜,硬度跟熱傳導係數都能隨著鑽石添加而改善性質。


    壹、 前言 1 貳、 文獻回顧 2 2.1 散熱的重要性 4 2.2 金屬基複合材料概況 7 2.2.1 封裝散熱材料 7 2.2.2 金屬基複合材料常見之製程 9 2.3 金屬基複合材料之理論性質 11 2.4 複合材料熱傳導係數影響因素 16 2.4.1 氣壓滲透法與擠壓鑄造法之比較 16 2.4.2 合金元素添加之影響 17 2.4.3 添加Si元素對熱傳導係數的影響 19 2.4.4 添加Cr、B元素的影響 22 2.4.5 合金元素反應層厚度 22 2.4.6 原生鑽石(100)及(111)面反應性之探討 27 參、 實驗方法與步驟 29 3.1 實驗設計與流程 29 3.2 濕式球磨法 33 3.3 大氣熱壓法 33 3.4 複合材料性質分析 35 3.4.1 金相觀察 35 3.4.2 緻密度量測 35 3.4.3 硬度測試 36 3.4.4 熱膨脹係數量測 36 3.4.5 熱傳導係數量測 37 肆、 結果與討論 40 4.1 濕式球磨前粉末觀察 40 4.1.1 原生鑽石(Saw Diamond) 40 4.1.2 銀粉 40 4.2 大氣熱壓複材 44 4.2.1 複合材料微結構觀察 44 4.2.2 壓力變化對鑽石銀基複材的影響 44 4.2.3 軋延及退火對鑽石銀基複材的影響 44 4.2.4 成份及含量鑑定 45 4.3 鑽石銀基複材性質量測 53 4.3.1 緻密度 53 4.3.2 熱傳導係數 56 4.3.3 緻密度與熱傳導係數之關係 61 4.3.4 熱傳導係數與界面熱導之關係 66 4.3.5 熱膨脹性質 72 4.3.6 硬度 78 伍、 結論 80 陸、 參考文獻 81

    1. D. B. Miracle, Composites Science and Technology 65 (2005) 2526–2540
    2. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jimenez, C. Merveille, and J. Coleto, Acta Astronautica 62 (2008) 422–430
    3. Ho, P. S., Basic Problems for Electromigration in VLSI Application, Proceedings of the IEEE, IRPS; (1982) pp. 288-291
    4. G. L. Romero, J. M. Fusaro, and J. L. Martinez, IAS 95, Conference Record of the 1995 IEEE Industry Application Conference. Thirtieth IAS Annual Meeting, Vol. 1, pp. 916-922
    5. A. Kelly and C. Zewben, Comprehensive Composite Materials, Pergamon Press, Oxford, (2000)
    6. K. A. Schmidt and C. Zewben, Electronic Materials Handbook, ASM International, Materials Park, Ohio, (1989)
    7. D. D. L. Chung and C. Zewben, Comprehensive Composite Materials, A. Kelly and C. Zewben, Eds., 6: Design and Applications, Pergamon Press, Oxford, (2000)
    8. C. Zweben, ASM Handbook, Volume 21, Composites, ASM International, Materials Park, Ohio, (2001) pp. 1078-1084
    9. C. Zweben, Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, Editors-in-Chief, Elsevier Science, Oxford, 3, (2001) pp. 2676-2683
    10. T. F. Fleming, C. D. Levan, and W. C. Riley, Processings of the International Electronic Packaging Conference, Wheaton, IL, International Electronic Packaging Society, (1995) pp. 493-503
    11. J. W. Klett and T. D. Burchell, Proceedings, 43rd International SAMPE Symposium, May 31-June 4, Anaheim, CA, 1998
    12. I. Golecki, Proceedings of the 1998 High Temperature Electronic Materials, Devices and Sensors Conference, San Diego, CA, published by the IEEE, (1998) pp.190-195,
    13. Thaw, J. Zemany, C. Zweben, Electronic Packaging and Production, August 1987 pp. 27-29
    14. J. Norley, Proceedings, IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, California, (2004) October 25-27
    15. C. Zweben, Electronics Cooling, Vol. 5, No. 3, (1999) pp. 36-42
    16. R. M. German, K. F. Hens, and J. L. Johnson, The International Journal of Powder Metallurgy, Vol.30, No.2, (1994) pp. 205-215
    17. J. Hashin and S. Shtrikman, J. Mech. Phys.: Solids, Vol. 11, (1963) pp. 127-140
    18. P. S. Turner, J. Res. NBS, Vol. 37, (1946) pp. 239
    19. E. H. Kerner, Proc. Phys. Soc., Vol. 68B, (1956) pp. 808
    20. T. T. Wang and T. K. Kwei, J. Polymer Sci., Vol. 7, (1969) pp. 889
    21. R. R. Tummala and A. L. Friedberg, J. Appl. Phys., Vol. 41, (1970) pp. 5104-5107
    22. R. A. Schapery, J. Comp. Mater., Vol. 2, (1968) pp. 380-404
    23. A. A. Fahmy and A. N. Ragai, J. Appl. Phys., Vol. 41, No. 13, (1970) pp. 5108-5111
    24. R. M. German, Metallurgical Transactions A, Vol. 24A, (1993) pp. 1745-1752
    25. D. P. H. Hasselman and K. Y. Donaldson, J. Am. Ceram. Soc., Vol. 75, No. 11, (1992) pp. 3137-3140
    26. A. G. Every, Y. Tzou, D. P. H. Hasselman and R. Raj, Acta Metall. Mater., Vol. 40, No. 1, (1992) pp. 123-129
    27. L. Rayleigh, Phil. Mag., Vol. 34, (1892) pp. 481-502
    28. Maxwell JC. A treatise on electricity and magnetism, vol. 1. 3rd ed. Oxford University Press (1904)
    29. D. P. H. Hasselman and L. F. Johnson, J. Comp. Mater., Vol. 21, No. 5, (1987) pp. 508-515
    30. Y. Benvensite, J. Appl. Phys., Vol. 61, (1987) pp. 2840-2843
    31. J. C. Y. Koh and A. Fortini, International Journal of Heat and Mass Transfer, Vol. 16, (1973) pp. 2013-2022
    32. F. A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, Diamond and Related Materials 13 (2004) pp. 393-400
    33. O. Beffort, S. Vaucher, F. A. Khalid, Diamond & Related Materials 13 (2004) pp. 1834–1843
    34. O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier, S. Kleiner, Diamond & Related Materials 15 (2006) pp. 1250–1260
    35. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Composites Science and Technology 66 (2006) pp. 2677–2685
    36. S. Kleiner, F.A. Khalid, P.W. Ruch, S. Meier, O. Beffort, Scripta Materialia 55 (2006) pp. 291–294
    37. R. Tavangar, J.M. Molina, L. Weber, Scripta Materialia 56 (2007) pp. 357–360
    38. L. Weber and R. Tavangar, Scripta Materialia 57 (2007) pp. 988-991
    39. Katsuhito Yoshida and Hideaki Morigami, Microelectronics Reliability 44 (2004) pp. 303–308
    40. M. Gu et al., “Progress in Nature Science” 7 (1997) pp. 600
    41. William B. Johnson and B. Sonuparlak, J. Mater. Res., Vol. 8, No. 5, May (1993) pp. 1169-1173
    42. L. Weber, C. Von Grunigen, N. Frigeni, in: H.P. Degischer (Ed.), Verbundwerkstoffe, 14. Symposium Verbundwerkstoffe und Werkstoffverbounde, DGM, WILEYVCH publ.,ISBN: 3-527-30762-1, 2003, pp. 801
    43. Binary alloy phase diagrams, 2nd ed, 1990, pp. 93 and 131
    44. T. Schubert, Ł. Ciupinski, W. Zielinski, A. Michalski, T. Weisgarber and B. Kieback, Scripta Materialia 58 (2008) pp. 263-266
    45. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publication, Bracknell, 1996
    46. Th. Schubert, B. Trindade, T. Wei□g¨arber, B. Kieback, Materials Science and Engineering A 475 (2008) pp. 39–44
    47. http://www.factdiamond.com
    48. http://www.agpro.com.tw/
    49. Metals Handbook, “Properties and Selection Nonferrous Alloys and Special-Purpose Materials”, Vol.2 Tenth Edition
    50. 傅美惠,“鑽石銀基複材熱性質之研究”,95 國立清華大學碩士論文
    51. S. K. Bhaumik, G. S. Upadhyaya, and M. L. Vaidya, Int. J. Refractory Met. & Hard Mat., 11, 9 (1992)
    52. David R. Gaskell, “Introduction to the thermodynamics of materials”, 4th ed
    53. J. Flaquer, A. R□os, A. Mart□n-Meizoso, S. Nogales, H. B□hm, Computational Materials Science 41 (2007) pp. 156~163
    54. J.E. Parrot and Stuckes, “Thermal Conductivity of Solids”
    55. D. P. H. Hasselman, Kimberly Y. Donaldson, Jen Liu, Ludwig J. Gauckler, and P. Darrell Ownby, J. Am. Ceram. Soc., Vol. 77 (1994) pp. 1757-1760
    56. K. Hanada, K. Matsuzaki, T. Sano, Journal of Materials Processing Technology, (2004) pp. 514-518
    57. Stoner and Maris, Physical Review Letters, Vol.68, No.10, pp. 1563-1566

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE