簡易檢索 / 詳目顯示

研究生: 張文明
Wen-Ming Chang
論文名稱: 有機模板金屬磷酸鹽和金屬膦酸鹽的水熱合成、晶體結構與性質研究
Hydrothermal Synthesis, Crystal Structures and Properties of Organically Templated Metal Phosphates and Metal Phosphonates
指導教授: 王素蘭
Sue-Lein Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 336
中文關鍵詞: 金屬磷酸鹽金屬膦酸鹽
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要以中溫中壓水熱合成法合成具有微孔結構或特殊性質的金屬磷酸鹽和1, 2-亞乙基二磷酸鹽材料,共合成出二十四個新穎的化合物,其中有十四個金屬草酸磷酸鹽、六個金屬磷酸鹽與四個金屬1, 2-亞乙基二磷酸鹽。所有的化合物皆利用單晶X光繞射分析來定出結構,並可進一步探討其合成條件、結構間的相關性以及各種結構之物理與化學性質。產物的純度以粉末X光繞射分析來證實、金屬元素種類和比例以電子微碳儀來鑑定、結構中之有機模板、水分子與配位基以元素分析、熱重分析與13C固態核磁共振光譜儀來證實、化合物的磁性現象以超導量子干涉磁量儀、固態光致發光光譜與反射式紫外光-可見光光譜分別以螢光光譜儀與紫外光-可見光光譜儀來測量。然而,依照有機與無機複合的種類不同可將化合物區分成三個部分:
    第一個部分包含了十四個金屬草酸磷酸鹽化合物,分為系列A與系列B。系列A包含了十個銦的化合物,在A4、A5、A7與A9中,會有類似的層之連接型態;在A2、A3與A8中,是由D6R來當作二級建構單元所建構而成,然而在A2與A3中會更進一步連接形成一維的無限鏈狀。系列B包含了四個化合物,個別以鐵、錳、鋅/鋁與鎵為金屬中心。
    第二部分包含了六個三維的鋅磷酸鹽化合物來當作系列C。C1至C5以兩個種類之線形有機胺來當作模板所建構而成的16環隧道之結構,而C6是以有機分子TREN(tris(2-aminoethyl)amine)來當作模板所建構而成的14環隧道之結構。除了一維的隧道外,C3至C5是由二維的16環隧道所組成。此外,C5擁有大於24環隧道結構ND-1之空隙。
    第三部分以1, 2-亞乙基二磷酸根為主,包含了三個鎵的化合物與一個釩/鎵的化合物來當作系列D。D2為層狀化合物,D1、D3與D4是透過1, 2-亞乙基二磷酸根上之碳與碳相連接而形成三維開放性骨架結構。
    本研究中,共發現了二十種新穎的結構型式,其中系列A與系列B分別詳述於第二章與第三章、系列C詳述於第四章與系列D詳述於第五章,並針對每一個化合物的晶體結構特徵進行描述與討論。


    This research focused on microporous metal phosphates and 1, 2-ethylenediphosphonates with new properties synthesized via mild hydrothermal synthesis. 24 new compounds were prepared, among them were 14 metal oxalatophosphates, 6 metal phosphates and 4 metal 1, 2-ethylenediphosphonates. All structures have been characterized by single-crystal X-ray diffraction and to be further discussed on their synthesis condition and physical properties. Samples with individual purity were preliminarily checked by powder XRD patterns. The metal ratio and types were confirmed by electron probe microanalysis data. Organic template, water molecules and ligands in the structure were confirmed by EA data, thermogravimetric analyses, and 13C NMR. The magnetic data was measured on a Quantum Design SQUID magnetometer. Solid-state PL spectra and Reflectance UV–vis spectra were studied. Based on the different organic and inorganic hybrid types, the compounds can be categorized into three parts:
    The first part contains 14 metal oxalatophosphates which can be divided into series A and B: series A contains 10 indium compounds in which A4, A5, A7 and A9 exhibit similar layer topology. A2, A3, and A8 contain D6Rs as a common secondary building units which further connect into infinite chains in A2 and A3. Series B consists of four compounds respectively with Fe, Mn, Al/Zn and Ga as the metal center.
    The second part contains 6 three-dimensional zinc phosphates as series C : C1 to C5 are 16R channel structures templated by two linear amines and C6 is a 14R channel structure using TREN(tris(2-aminoethyl)amine) molecules as templates. Other than 1D channels, C3 to C5 consists of 2D 16-ring channels. Furthermore, C5 shows larger nonframework space than ND-1.
    In the third part are 3 gallium and 1 vanadium/gallium compounds (series D) with 1, 2-ethylenediphosphonic acids as ligands. D2 is a layer compound while D1, D3 and D4 are 3D open framework structures by connecting the carbon on 1, 2-ethylenediphosphonate ligands.
    Among the 24 new compounds in this thesis, there are 20 new structure types. Series A and B are respectively described in Chapter 2 and Chapter 3, series C is described in Chapter 4 and Series D is described in Chapter 5 in which every compound is detailed on its structure characteristic.

    第一章 緒論 1-1 前言 1-1 1-2 微孔材料的簡介與應用 1-2 1-3 鑭系金屬發光原理 1-9 1-3-1 螢光體簡介 1-9 1-3-2 發光原理 1-11 1-3-2A 銪離子發光原理 1-12 1-3-2B 鋱離子發光原理 1-13 1-3-3 如何判別銪離子對稱環境 1-13 1-4 研究動機 1-15 1-5 合成方法簡介 1-16 1-5-1 水熱合成法 1-16 1-5-2 藥品一覽表 1-19 1-6 結構鑑定與性質量測方法 1-21 1-6-1 鑑定方法 1-22 1-6-1A 本研究中所使用的儀器機型 1-22 1-6-1B 鑑定的流程方式 1-23 1-6-2 儀器量測簡介 1-24 1-6-2A 單晶X-ray結構分析 1-24 1-6-2B 粉末X-ray繞射分析 1-27 1-6-2C 熱重量/微差熱分析 1-28 1-6-2D 元素分析 1-29 1-6-2E 超導量子干涉磁量儀之磁性分析 1-30 1-6-2F 電子微碳分析 1-33 1-6-2G 傅立葉紅外線光譜分析 1-34 1-6-2H 螢光儀 1-36 1-6-2I UV-Vis吸收光譜儀 1-38 1-6-2J 固態核磁共振光譜儀 1-39 1-7 研究成果摘要 1-46 1-8 參考文獻 1-53 第二章 有機/無機複合銦草酸磷酸鹽化合物的結構與性質研究 2-1 前言 2-1 2-2 合成實驗 2-3 2-3 化合物的晶體結構解析 2-7 2-4 化合物鑑定 2-12 2-4-1 粉末X-ray繞射分析 2-12 2-4-2 元素分析 2-12 2-5 化合物性質量測 2-13 2-5-1 熱重分析結果 2-13 2-5-2 UV-Vis吸收光譜測量 2-21 2-5-3 光致發光特性 2-21 2-6 化合物結構描述 2-27 2-6-1 零維骨架結構 2-27 2-6-2 二維骨架結構 2-27 2-6-3 三維骨架結構 2-29 2-7 結論 2-54 2-8 參考文獻 2-58 第三章 有機/無機複合金屬草酸磷酸鹽化合物的結構與性質研究 3-1 前言 3-1 3-2 合成實驗 3-2 3-3 化合物的晶體結構解析 3-3 3-4 化合物鑑定 3-6 3-4-1 粉末X-ray繞射分析 3-6 3-4-2 元素分析 3-6 3-5 化合物性質量測 3-6 3-5-1 熱重分析結果 3-6 3-5-2 磁性測量 3-8 3-6 化合物結構描述 3-11 3-6-1 一維加二維骨架結構 3-11 3-6-2 一維骨架結構 3-12 3-6-3 二維骨架結構 3-13 3-7 結論 3-22 3-8 參考文獻 3-23 第四章 有機模板鋅磷酸鹽化合物的結構與性質研究 4-1 前言 4-1 4-2 合成實驗 4-2 4-3 化合物的晶體結構解析 4-4 4-4 化合物鑑定 4-8 4-4-1 粉末X-ray繞射分析 4-8 4-4-2 元素分析 4-8 4-4-3 13C固態核磁共振光譜鑑定 4-8 4-5 化合物性質量測 4-10 4-5-1 熱重分析結果 4-10 4-5-2 UV-Vis吸收光譜測量 4-12 4-5-3 光致發光特性 4-12 4-6 化合物結構描述 4-16 4-7 結論 4-32 4-8 參考文獻 4-36 第五章 有機/無機複合金屬乙基二磷酸鹽化合物的結構與性質研究 5-1 前言 5-1 5-2 合成實驗 5-2 5-3 化合物的晶體結構解析 5-3 5-4 化合物鑑定 5-5 5-4-1 粉末X-ray繞射分析 5-5 5-4-2 元素分析 5-5 5-5 化合物性質量測 5-6 5-5-1 熱重分析結果 5-6 5-5-2 磁性測量 5-7 5-6 化合物結構描述 5-9 5-6-1 二維骨架結構 5-9 5-6-2 三維骨架結構 5-10 5-7 結論 5-20 5-8 參考文獻 5-24 第六章 總結 6-1 附錄A 晶體結構解析的詳細資料表 A-1 附錄B 化合物的粉末X-ray繞射圖比對 B-1 附錄C 研究所期間發表的論文 C-1

    1. Julien, C. Material Science and Engineering 1990, B6, 9.
    2. (a) Fang, J.; Holloway, P. H.; Yu, J. E.; Jones, K. S.; Pathangey, B.; Brettschneider, E.; Anderson, T. J. Applied Surface Science 1993, 7
    (b) Futh, A.; Gallinger, R. P.; Schuster, P.; Adolph, J.; Gaporalettio, O. Thin Solid Film 1992, 207, 202.
    3. Sharrock, M. P. MRS BULLETIN 1990, March, 53.
    4. (a) Hiroshi, M. JEE 1992, January, 32.
    (b) Zeng, Z. J. Phys. Chem. Solids 1991, 52, 659.
    5. Rickert, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 37.
    6. Smith, J. V. Chem. Rev. 1988, 88, 149.
    7. (a) D. Breck, Zeolite Molecular Sieves:Structure, Chemistry and use, Wiley, New York, 1974.
    (b) R. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1982.
    8. S. Wilson, T. Cannan, E. Flanigen, B. Lok and C. Messina, ACS Symp. Ser., 1983, 218, 79.
    9. Eur. J. Solid State Inor. Chem. 1991, 28, Special Issue.
    10. Haushalter, R. C.; Mundi, L. A. Chem. Mater. 1992, 4, 31.
    11. Bu, X; Feng, P; Stucky, G. D. Science 1997, 278, 2080.
    12. Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic
    Press:New York, 1982.
    13. El Brahimi M.; Durand J.; Revue de Chimie Mineral, 1986, 23, 146.
    14. Zumsteg, F. C.; Bierlein, J. D.; Gier, T. E. J. Appl. Phys. 1976, 47,
    4980.
    15. (a) Amoros, P.; Beltran-Porter, A.; Vilieneuve, G.; Beltran-Porter, D.
    Eur. J. Solid State Inorg. Chem. 1992, 29, 257.
    (b) Wang, S. L.; Lee, W. C. Acta Cryst. 1991, C47, 1709.
    16. Linde, S. A.; Gorbunova, Y. E.; Lavrov, A, V.; Kuznestov, V.G.
    Doklady Akademii Nauk SSSR, 1979, 244, 1411.
    17. Aranda, M. A. G.; Attfied, J. P.; Bruque, S; Maria, M. L. Inorg.
    Chem. 1992, 31, 1045.
    18. Jiang, Y. C.; Wang, S. L.; Lii, K. H. Chem. Mater. 2003, 15, 1633.
    19. Tsai, Y. M.; Wang, S. L.; Huang, C. H.; Lii, K. H. Inorg. Chem.
    1999, 38, 4183.
    20. Mrak, M.; Kolitsch, U.; Lengauer, C.; Kaucic, V.; Tillmanns, E.;
    Inorg. Chem. 2003, 42, 598.
    21. Choi, C. T. S.; Anokhina, E. V.; Day, C. S.; Zhao, Y,; Taulelle, F.;
    Huguenard, C.; Gan, Z.; Lachgar, A. Chem. Mater. 2002, 14, 4096.
    22. Chen, C. Y.; Chu, P. P.; Lii, K. H. Chem. Commun. 1999, 1473.
    23. H. de Sainte Claire Deville, C. R. Hebd. Seances Acad. Sci. 1862, 54,
    324.
    24. Barrer, R. M. J. Chem. Soc. 1948, 127.
    25. Barrer, R. M.; Denny, P. J. J. Chem. Soc. 1961, 971
    26. Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.;
    Davis, M. E. Chem. Comm. 1997, 2179.
    27. Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C. Y.; Balkus,
    K. J.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 8474.
    28. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen,
    E. M. J. Am. Chem. Soc. 1982, 104, 1146.
    29. Jones, R. H.; Thomas, J. M.; Chen, J.; Xu. R.; Huo, Q.; Li, S.; Ma,
    Z.; Chippindale, A. M. J. Solid Sate Chem. 1993, 102, 204.
    30. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J. M.; Crowder, C.
    Nature 1988, 331, 698.
    31. Khan, M. L.; Lee, Y. -S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta,
    J. Chem. Mater. 1994, 6, 721.
    32. Khan, M. I.; Lee, Y. S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta,
    J. J. Am. Chem. Soc. 1994, 116, 4525.
    33. Khan, M. I.; Meyer, L. M.; Haushalter, R. C.; Schweitzer, A. L.;
    Zubieta, J.; Dye, J. L. Chem. Mater. 1996, 8, 43.
    34. Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Conner,
    C. J.; Lee, Y. –S. Chem. Mater. 1993, 5, 1690.
    35. Haushalter, R. C.; Strohmaier, K.; Lai, F. W. Science 1989, 246,
    1289.
    36. Cavellec, M.; Riou, D.; Ferey, G. Acta Crystallogr. Sect. C. 1995, 51,
    2242.
    37. Ferey, G.; Loiseau, T.; Riou, D. Mater, Sci. Forum 1994, 152, 125.
    38. Ferey, G. J. Fluorine Chem. 1995, 72, 187.
    39. Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.;
    Kessler, H. Nature 1991, 352, 320.
    40. Loiseau, T.; Ferey, G. Eur. J. Solid State Inorg. Chem. 1993, 30, 369.
    41. Loiseau, T.; Ferey, G. J. Solid State Chem. 1994, 111, 403.
    42. Loiseau, T.; Retoux, R.; Lacorre, P.; Ferey, G. J. Solid State Chem.
    1994, 111, 427.
    43. Loiseau, T.; Ferey, G. J. Mater. Chem. 1996, 6, 1073.
    44. Loiseau, T.; Ferey, G. Chem. Commun. 1997, 1093.
    45. Kinoshita, Y.; Matsubara, I.; Higuchi, T.; Saito, Y. Bull. Chem. Soc.
    Jpn 1959, 32, 122.
    46. Li, Hailian.; Eddaoudi, Mohamed.; O’Keeffe, M.; Yaghi, O. M.
    Nature 1999, 402, 276.
    47. Grün, M.; Kurganov, A. A.; Schacht, S.; Schüth, F.; Unger, K. K. J.
    Chromatogr. 1996, A740, 1.
    48. Thoelen, C.; van deWalle, K.; Vankelecom, I. F. J.; Jacobs, P. J.
    Chem. Commun. 1999, 1841.
    49. Sierra, L.; Lopez, B.; Ramirez, A.; Guth, J. L. Stud. Surf. Sci. Catal.
    2001, 135.
    50. McCoy, M. Chem. Eng. News. 2000, 78, 13.
    51. Wang, Z.; Wang, H.; Mitra, A.; Huang, L.; Yan, Y. Stud. Surf. Catal.
    135, [CD-ROM] Paper 20-P-11 (Elsevier 2001).
    52. Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc. 2005, 127,
    9986.
    53. (a) Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2000, 12, 2525.
    (b) Wada, Y. et al. J. Am. Chem. Soc. 2000, 122, 8583.
    54. Lauffer, R. B. Chem. Rev. 1987, 87, 901.
    55. Cacheris, W. P.; Quay, S. C.; Rocklage, S. M. Magn. Reson Imaging
    1990, 8, 467.
    56. Balkus, K. J. Jr.; Sherry, A. D.; Young, S. W. US Patent 1992, 5, 122,
    363.
    57. Balkus, K. J. Jr.; Bresinska, I.; Kowalak, S.; Young, S. W. Mater. Res.
    Soc. Symp. Ser. 1991, Proc 223, 225.
    58. Balkus, K. J. Jr.; Shi, J. J. Phys. Chem. 1996, 100, 16429.
    59. Balkus, K. J. Jr.; Shi, J. Langmuir. 1996, 12, 6277.
    60. Crabtree, R. H. Nature 2000, 408, 415.
    61. 郭琬琳,陳宏凱,盧曉琪,鄭炳銘 科學發展 2005, 11.
    62. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. J. Chem.
    Phys. 1989, 90, 343.
    63. Carlos, L. D.; Messaddeq, Y.; Beito, H. F.; Sá Ferreira, R. A.; de Zea
    Bermudez, V.; Ribeiro, S. J. L. Adv. Mater. 2000, 12, 594.
    64. Huber, G.; Syassen, K.; Holzapfel, W. B. Phys. Rev. B 1977, 15,
    5123.
    65. Caelos, L. D.; Viderira, A. L. L. Phys. Rev. B 1994, 49, 11721.
    66. Blasse, G.; Grabmaier, C. Luminescence Materials, Springer, 1994.
    67. Wang, S. L., Richardson, J. W. Jr., Z. Krystallogr. 1992, 202, 227.
    68. Stucky, G. D., Phillids, M. L. F., Gier, T. E., Chem. Mater. 1989, 1,
    492.
    69. West, A. R., Solid State Chemistry and Its Applications, John Weiley
    & Sons, New York, 1984.
    70. Johnson, J. W., Jacobson, A. J. Angew. Chem. Int. Ed. Engl. 1983,
    22, 412.
    71. Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.
    72. Moore, P. B.; Shen, J. Nature 1983, 24, 356.
    73. Angew. Chem. Int.Ed. Engl. 1995, 24, 1026.
    74. Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Brucker
    AXS, 1998.
    75. Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, B41, 244.
    76. Spek, L. Acta Crystallogr. Sect. A 1990, 46, C34.
    77. Alcock, N. W. Bonding and structure; Ellis Horwood: New York,
    1990.
    78. (a)Hawthoren, F. C. Zeit. Fűr Kridtallogr. 1992, 201, 183.
    (b) Hawthoren, F. C. Acta Crystallogr. 1994, B50, 481
    79. Values of Lewis acid strength (v. u.) for cations were taken from
    Brown, I. D. Structure and Bonding in Crystals 1981, Vo2., edited by O’keeffe, M. and Navrotsky, A., pp. 1-30. New York: Academic press.
    80. Mabbs, F. E.; Machin, D. J. “Magnetism and Transition Metal
    Complex”
    81. Stephen, J. L. “Progress in Inorganic Chemistry vol 29”
    82. Richard, L. C. “Magnetochemistry”
    83. Selwood, P. W. Magnetochemistry; Interscience: New York, 1956.
    84. Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of
    Organic”, 1963.
    85. Skoog, D. A.; Leary, J. J. “Principles of Instrumental Analysis”.4th
    Harcourt Brace College Publishers 1992.
    86. Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature. 1958, 182, 1659.
    87. Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
    88. Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1972, 56, 1776.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE