簡易檢索 / 詳目顯示

研究生: 翁偉倫
Weng, Wei-Lun
論文名稱: 應用CONWIP降低在製品之個案研究–以W公司為例
CONWIP Application for Work-In-Process Reduction –A Case Study of W Company
指導教授: 陳建良
Chen, James C.
口試委員: 陳子立
Chen, Tzu-Li
陳盈彥
Chen, Yin-Yann
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系碩士在職專班
Industrial Engineering and Engineering Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 在製品CONWIP推式生產Little’s Law系統模擬
外文關鍵詞: WIP, CONWIP, Push Production, Little’s Law, Simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代的工廠中,在製品經常是被拿來衡量工廠製造能力的績效指標之一,公司如何在有限的資源及需求快速變化的背景下做好在製品管控將是重要的課題。制訂標準且合理的在製品數量除了可以降低空間利用率及存貨成本外,更可以減少因生產過程中異常狀況發生時所帶來的附加成本。
      本文選定一家EMS工廠作為本次的研究對象,並以個案研究的方式進行。本研究主要探討於相同的生產條件下,推式生產(Push)與CONWIP(Constant Work In Process)生產兩種模式的生產績效,並透過FlexSim系統模擬進行數據蒐集,以在製品數量、產出率(TH)、產品週期時間(CT)等指標進行改善前後效益的比較。同時探討人員作業不穩定的情況下,須達成最大產能所對應到的最佳的在製品數量。


    In modern factories, WIP (Work In Process) is often one of the performance indicators used to measure the manufacturing capacity of factories. How to do WIP management and control under the background of limited resources and rapid changes in demand will be an important issue. In addition to reducing space utilization and inventory costs, it can also reduce additional costs caused by abnormal conditions in the production process through setting Set standard and reasonable WIP.
      This article selects an EMS factory as the object of this study, and conducts it in the form of a case study. This research mainly discusses the production performance of the two modes of push production and CONWIP(Constant Work In Process) production under the same production conditions, and collects data through the simulation of the FlexSim system. WIP, Throughput (TH), Product Cycle Time (CT) and other indicators benefits are compared before and after improvement. At the same time, it discusses the optimal number of WIPs to achieve the maximum capacity under the condition of unstable personnel operations.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 諸論 1 1.1研究背景與動機 1 1.2研究目的與方法 2   1.3研究範圍與對象 3 1.4研究架構與流程 4 第二章 文獻探討 6 2.1推式PCS 6 2.2看板PCS 6 2.3 CONWIP PCS 8 第三章 研究方法 13 3.1系統模擬簡介 13 3.2 FlexSim軟體簡介 16 3.3基本模型建立 18 第四章 個案研究分析 20 4.1個案背景簡介 20 4.2觀察對象選定 23 4.3問題描述 29 4.4目標設定與問題改善 40 4.5數據模擬 43 4.6效益分析 61 第五章 結論與建議 65 5.1結論 65 5.2建議 66 參考文獻 67

    Azadeh, A., Maleki-Shoja, B., Sheikhalishahi, M., Esmaili, A., Ziaeifar, A. & Moradi, B. (2015). A simulation optimization approach for flow-shop scheduling problem: a canned fruit industry. International Journal of Advanced Manufacturing Technology, 77, 751-761.
    Bonvik, A. M., Couch, C. E. & Gershwin, S. B. (1997). A comparison of production-line control mechanisms. International Journal of Production Research, 35(3), 789-804.
    Chan, F. T. S. (2001). Effect of kanban size on just-in-time manufacturing systems. Journal of Materials Processing Technology, 116(2-3), 146-160.
    Framinan, J. M., Ruiz-Usano, R. & Leisten, R. (2000). Input control and dispatching rules in a dynamic CONWIP flow-shop. International Journal of Production Research, 38(18), 4589-4598.
    Framinan, J. M., Ruiz-Usano, R. & Leisten, R. (2001). Sequencing CONWIP flow-shops: Analysis and heuristics. International Journal of Production Research, 39(12), 2735-2749.
    Framinan, J. M., Gonzalez, P. L. & Ruiz-Usano, R. (2006). Dynamic card controlling in a CONWIP system. International Journal of Production Economics, 99(1), 102-116.
    Gstettner, S. & Kuhn, H. (1996). Analysis of production control systems kanban and CONWIP. International Journal of Production Research, 34(11), 3253-3273.
    Grangeon, N., Tanguy, A. & Tchernev, N. (1999). Generic simulation model for hybrid flow-shop. Computers & Industrial Engineering, 37(1-2), 207-210.
    Gaury, E. G. A., Pierreval, H. & Kleijnen, J. P. C. (2000). An evolutionary approach to select a pull system among Kanban, CONWIP and Hybrid. Journal of Intelligent Manufacturing, 11, 157-167.
    Geraghty, J. & Heavey, C. (2004). A comparison of Hybrid Push/Pull and CONWIP / Pull production inventory control policies. International Journal of Production Economics, 91(1), 75-90.
    Geraghty , J. & Heavey, C. (2005). A review and comparison of hybrid and pull-type production control strategies. OR Spectrum, 27, 435–457.
    Grosfeld-Nir, A. & Magazine, M. (2005). A simulation study of pull systems withascending/descending buffers and stochastic processing times. International Journal of Production Research, 43(17), 3529-3541.
    Hopp, W. J. & Spearman, M. L. (1995). Factory Physics : Foundations of ManufacturingManagement. McGraw-Hill, Inc.
    Herer, Y. T. & Masin, M. (1997). Mathematical programming formulation of CONWIP based production lines; and relationships to MRP. International Journal of Production Research, 35(4), 1067-1076.
    Hopp, W. J. & Roof, M. L. (1998). Setting WIP levels with statistical throughput control (STC) in CONWIP production lines. International Journal of Production Research, 36(4), 867-882.
    Huang, Y., Wan, H. & Chen, F. (2013). Simulation Studies of Hybrid Pull Systems of Kanban and CONWIP in an Assembly Line. Flexible Automation and Intelligent Manufacturing, FAIM2013, Porto, Portugal.
    Huang, G., Chen, J., Wang, X., Shi, Y. & Tian, H. (2017). From loop structure to policy-making: a CONWIP design framework for hybrid flow shop control in one-of-a-kind production environment. International Journal of Production Research, 55(12), 3374-3391.
    Ip, W. H., Yung, K. L., Huang, M. & Wang, D. (2002). A CONWIP model for FMS control. Journal of Intelligent Manufacturing, 13, 109-117.
    Jeon, S. M. & Kim, G. (2016). A survey of simulation modeling techniques in production planning and control (PPC), Production Planning & Control, 27(5), 360-377.
    Jaegler, Y., Jaegler, A., Burlat, P., Lamouri, S. & Trentesaux, D. (2018). The CONWIP production control system: a systematic review and classification. International Journal of Production Research, 56(17), 5736-5757.
    Kimura, O. & Terade, H. (1981). Design and analysis of pull system a method of multistage production control. International Journal of Production Research, 19(3), 241-253.
    Kanet, J. J. (1988). MRP 96: Time to rethink manufacturing logistics. Production and Inventory Management Journal, 29(10), 57-61.
    Kumar, C. S. & Panneerselvam, R. (2007). Literature review of JIT-KANBAN system. International Journal of Advanced Manufacturing Technology, 32(3), 393-408.
    Kianfar, K., Fatemi Ghomi, S. M. T. & Karimi, B. (2009). New dispatching rules to minimize rejection and tardiness costs in a dynamic flexible flow shop. International Journal of Advanced Manufacturing Technology, 45, 759-771.
    Korugan, A. & Gupta, Surendra M. (2014). An adaptive CONWIP mechanism for hybrid production systems. International Journal of Advanced Manufacturing Technology, 74, 715-727.
    Little, J. D. C. (1961). A Proof for the Queuing Formula: L = λW. Operations Research. 9 (3): 383–387.
    Law, A. M. & Kelton, D. (2000). Simulation Modeling and Analysis, McGraw-Hill, Inc.
    Lin, J. T. & Chen, C. M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100-114.
    Liu, R., Xie, X., Yu, K. & Hu, Q. (2018). A survey on simulation optimization for the manufacturing system operation. International Journal of Modelling and Simulation, 38(2), 116-127.
    Prakash, J. & Chin, J. F. (2015). Modified CONWIP systems: a review and classification. Production Planning & Control, 26(4), 296-307.
    Spearman, M. L. & Zazanis, M. A. (1988). Push and Pull production systems: Issues and Comparisons. Operations Research, 40(3), 521-532.
    Spearman, M. L., Woodruff, D. L. & Hopp, W. J. (1990). CONWIP: a pull alternative to Kanban, International Journal of Production Research, 28(5), 879-894.
    Tekin, E. & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11), 1067-1081.
    Thürer, M., Fernandes, N. O., Ziengs, N. & Stevenson, M. (2019). On the meaning of CONWIP cards: an assessment by simulation. Journal of Industrial and Production Engineering, 36(1), 49-58.
    Yang, T., Kuo, Y. & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors — a case study. International Journal of Production Research, 42(19), 4015-4030.
    林義傑(2011),應用限制理論改善推拉式生產排程問題-以CM公司為例,南台科技大學行銷與流通管理研究所碩士學位論文,台南市.
    王逸琦(2013),Multi-CONWIP於具瓶頸站作業之拉式生產系統之研究,逢甲大學工業工程與系統管理學系碩士論文,台中市.
    蔡文娟(2013),Multi-CONWIP拉式生產系統之模擬研究,南台科技大學管理與資訊系工業管理研究所碩士學位論文,台南市.

    QR CODE