簡易檢索 / 詳目顯示

研究生: 彭育賢
Peng, Yu-Hsien
論文名稱: 氧化鉿薄膜之電阻式記憶體電阻轉換特性研究
The Resistive Switc hing Characteristics of Resistive Random Access Memory Made by HfOx Thin Films
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 電阻轉換特性電阻式記憶體氧化鉿
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法在白金(Pt)底電極上鍍製HfOx固態電解質薄膜,並鍍製不同的上電極金屬製作出具有金屬-絕緣層-金屬(MIM)結構的電阻式記憶體。藉由銀(Ag)、銅(Cu)、白金(Pt)三種不同上電極元件的電性分析,探討元件發生電阻轉換現象的可能成因,此外我們還調整了元件固態電解質的厚度以及量測所設定的電流限制值,觀察元件的電阻轉換特性在這些改變下所受到的影響,研究電阻轉換的可能機制。最後,由於電阻式記憶體的電阻轉換行為與離子在固態電解質內部的擴散有關,因此我們將量測元件在不同溫度以及不同定電壓下完成Forming所需要的時間,配合離子跳躍的相關理論,解釋離子在外加電場的影響下,在HfOx固態電解質中移動行為。由實驗結果得到以下重要的訊息:
    (一)HfOx的電阻轉換特性是由容易氧化的上電極金屬(銀、銅)所造成,而金屬氧化後所形成的金屬離子能夠藉由電場的影響擴散進入HfOx固態電解質中。(二)Ag/HfOx/Pt元件的電阻轉換機制與導電微通道在固態電解質內部的生成、斷裂、以及復原有關。(三)外加電場會改變離子在固態電解質內部移動時所需要跨越的能障,造成離子的移動速度與電場呈現非線性的提升,降低元件發生電阻轉換所需要的時間。(四)固態電解質薄膜的活化能會影響離子移動的難易程度,因此我們可以藉由薄膜活化能的量測,更加了解元件的各種操作特性。


    第一章 前言與研究動機 1 第二章 文獻回顧 3 2.1 電阻式記憶體簡介 3 2.1.1 電阻式記憶體結構 3 2.1.2 電阻式記憶體的操作方式 4 2.1.3 電阻轉換機制 4 2.2 導電微通道的直接觀測 6 2.2.1 CBRAM元件 7 2.2.2 RRAM元件 9 2.3 以HfOx材料所製成的電阻式記憶體 11 2.3.1 RRAM 12 2.3.2 CBRAM 13 2.4 離子在固態電解質中移動行為的討論 15 第三章 實驗方法與流程 37 3.1 元件製作 37 3.1.1 白金底電極的製備 37 3.1.2 固態電解質(HfOx)的製備 38 3.1.3 上電極的製備 38 3.2 薄膜特性分析 38 3.2.1 SEM 38 3.2.2 AFM 39 3.2.3 XRD 39 3.3 電性量測 39 3.4 氧化鉿活化能之量測 40 第四章 實驗結果與討論 45 4.1 HfOx薄膜特性分析 45 4.2 上電極對元件的影響 46 4.2.1 銀作為上電極的元件 47 4.2.2 銅作為上電極的元件 48 4.2.3 白金作為上電極的元件 49 4.2.4 結論 49 4.3 Ag/HfOx/Pt元件的電阻轉換特性 50 4.3.1 電流限制值對元件的影響 51 4.3.2 固態電解質厚度對元件的影響 52 4.4 HfOx活化能的量測 55 4.4.1 原理 55 4.4.2 34nm HfOx活化能量測 58 4.4.3 60nm HfOx活化能量測 60 4.4.4 銀離子在固態電解質中移動距離的計算 61 4.4.5 結論 62 第五章 結論 90 第六章 參考文獻 92

    1. Meijer, G.I., Who wins the nonvolatile memory race? Science, 2008. 319(5870): p. 1625-1626.
    2. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nat. Mater., 2007. 6(11): p. 833-840.
    3. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28.
    4. Won, S., et al., Resistive switching properties of Pt/TiO2/n(+)-Si ReRAM for nonvolatile memory application. Electronic Materials Letters, 2008. 4(1): p. 29-33.
    5. Chang, W.Y., et al., Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Applied Physics Letters, 2008. 92(2).
    6. Guan, W.H., et al., Nonpolar nonvolatile resistive switching in Cu doped ZrO2. Ieee Electron Device Letters, 2008. 29(5): p. 434-437.
    7. Yoshida, C., et al., High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Applied Physics Letters, 2007. 91(22).
    8. Sakamoto, T., et al., Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett., 2007. 91(9): p. 092110.
    9. Kozicki, M.N., et al. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes. in Non-Volatile Memory Technology Symposium, 2005. 2005.
    10. Sakamoto, T., et al., Nanometer-scale switches using copper sulfide. Appl. Phys. Lett., 2003. 82(18): p. 3032-3034.
    11. Park, Y.S., et al., Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte. Applied Physics Letters, 2007. 91.
    12. Liang, X.F., et al., Resistive switching and memory effects of AgI thin film. Journal of Physics D-Applied Physics, 2007. 40(16): p. 4767.
    13. Lee, H.Y., et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008.
    14. Sawa, A., et al., Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2004. 85(18): p. 4073-4075.
    15. Tokunaga, Y., et al., Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces. Applied Physics Letters, 2006. 88(22).
    16. Choi, B.J., et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 2005. 98(3).
    17. Janousch, M., et al., Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater., 2007. 19(17): p. 2232-2235.
    18. Szot, K., et al., Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. , 2006. 5(4): p. 312-320.
    19. Guo, X. and C. Schindler, Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007. 91(13).
    20. Yang, Y.C., et al., Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Letters, 2009. 9(4): p. 1636-1643.
    21. Kwon, D.H., et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010. 5(2): p. 148-153.
    22. Lee, H.Y., et al., HfOx Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode. Ieee Electron Device Letters, 2009. 30(7): p. 703-705.
    23. Lee, H.Y., et al., Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap. Ieee Electron Device Letters, 2010. 31(1): p. 44-46.
    24. Haemori, M., T. Nagata, and T. Chikyow, Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion. Applied Physics Express, 2009. 2(6).
    25. Wang, Y., et al., Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010. 21(4).
    26. Strukov, D.B. and R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. a-Mater. Sci. & Pro., 2009. 94(3): p. 515-519.
    27. Jo, S.H., K.H. Kim, and W. Lu, Programmable Resistance Switching in Nanoscale Two-Terminal Devices. Nano Lett., 2009. 9(1): p. 496-500.
    28. Jo, S.H., K.H. Kim, and W. Lu, High-Density Crossbar Arrays Based on a Si Memristive System. Nano Lett., 2009. 9(2): p. 870-874.
    29. Liu, Q., et al., Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device. Applied Physics Letters, 2009. 95(2).
    30. Lee, M.J., et al., Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory. Nano Letters, 2009. 9(4): p. 1476-1481.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE