簡易檢索 / 詳目顯示

研究生: 吳至昇
Chi-Sheng Wu
論文名稱: 單晶矽奈米線的幾何生長控制
Geometry-Controlled Fabrication of Single Crystalline Silicon Nanowires
指導教授: 嚴大任
Ta-Jen Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 98
中文關鍵詞: 矽奈米線無電鍍法田口法場發射拉曼效應
外文關鍵詞: silicon nanowires, electroless metal deposition, Taguchi methods, field emission, Raman effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無論在半導體,光電,生醫以及能源產業,矽奈米線的重要性不可言喻。近年來在製成技術上有很大的進展,如氣液固生長法(VLS),固液固生長法(SLS),溶液生長法,氧化層幫助生長法(OAG),模組幫助生長法,化學氣相沈積法(CVD)等。實際應用矽奈米線的關鍵在於矽奈米線的幾何控制,其包含長度,晶向和大小。但前面所提及的方法,除了CVD法能夠成長出大尺度排列的矽奈米線陣列之外,其餘的均生長出隨機方向的矽奈米線。不過CVD法的矽奈米線直徑取決於金催化劑的大小,直徑分佈範圍從50-250奈米不等。且用催化方法不可避免的需要飽和摻雜物及溫度要大於900度C,阻礙其應用在積體電路工業上的發展(特別是普遍使用金當催化劑這一環,金對於積體電路來說是毒藥)。

    在本篇研究中,我們使用無電鍍金屬沈積法(EMD),一種簡單又方便的方法去生長出具有單晶,整齊排列,大面積特性的矽奈米線。生長出奈米線之後,我們下一步著重於其幾何控制(生長方向,長度和寬度)。我們的實驗成功地生長出不同成長方向的矽奈米線。當使用(100)試片,生長出垂直試片表面的<100>方向矽奈米線;使用(110)試片則生長出同樣具有<100>方向但傾斜的矽奈米線;至於使用(111)試片生長出<111>垂直表面方向和<100>傾斜方向,且<100>方向形成金字塔外觀。因此,<100>是矽奈米線的優選生長方向。

    在長度控制方面,我們實驗出矽奈米線的長度跟蝕刻時間呈一線性關係,生長速率大概為1.08 μm / min,比起VLS法快上許多。直徑控制上我們利用田口法,使用較少的實驗次數去得到最佳的參數,導致出一個較窄的直徑分佈及瞭解各實驗參數的影響效果。此外,量測不同晶向試片的場發射性質和拉慢光譜,(100)上的矽奈米線具有最佳的場發射性質,起始電場為1.5 V / μm和 0.1 μA的電流密度。另一方面,(111)上的矽奈米線表現出最大的拉曼強度訊號。最後我們把利用(100)生長出的矽奈米線上半部成功置換成銅奈米線,對於內連接器,電漿光子和生物感測的應用上是可行的。


    Owing to the significance of silicon nanowires, many fields including semiconductor, optoelectronic, bio-sensor, and energy resource, the development of fabricating them is in progress, for example, vapor-liquid-solid (VLS) growth 1, solid-liquid-solid (SLS) growth 2, solution-grown process 3, oxide assisted growth (OAG) 4, template-assisted growth, catalytic chemical vapor deposition (CVD) 5, and others 6. In fact, a crucial key of realizing the practical applications based on SiNWs is the geometric control of fabricated SiNWs - including their lengths, orientations, and sizes. Unfortunately most of methods aforementioned result in randomly oriented SiNWs and exceptionally a catalytic chemical CVD process promise a large-scale aligned SiNWs array. Yet, the diameters of the SiNWs fabricated by this method widely range from 50-250 nm mainly determined by the size of gold (Au) catalysts. More critically, SiNWs fabricated by the catalytic processes inevitably contain saturated dopants and the process temperature is usually above 9000C, impeding their implementation in IC industry (in particularly, the most popular catalyst is gold, an extremely lethal impurity for ICs).

    As a result, here we employ a electroless metal deposition (EMD) method 7, allowing simple and convenient approach to generate SiNWs of single-crystalline, well-aligned and large area. After synthesizing the SiNWs, the next step focuses on controlling the geometry (growth direction, length, and width). In our research, we successfully fabricate different growth directions of SiNWs. When using (100) wafer, growth direction is <100> and SiNWs are vertical to the substrate. When using (110) wafer, growth direction is <100> and SiNWs are inclined to the substrate. When using (111) wafer, two growth directions are observed, <111>and <100>; one kind of SiNWs are generated vertically to the substrate, anther kinds are slant to the substrate and form pyramid shapes. Therefore, the preferential crystallographic orientation of fabricating SiNWs is <100> direction.

    In our experiment, the length of SiNWs which are grown on the (100) wafer shows a linear relationship with the etching time. The growth rate is about 1.08 μm / min. To compare with VLS method, it is really fast. The diameter control of SiNWs is achieved by employing Taguchi method, a powerful tool that uses less experiment times to get the optimal parameters, leading to the capability of controlling the diameter with narrow distribution and comprehension of the influences from all process parameters. Afterwards, we use SiNWs which are grown on different oriented wafer to do the field emission detection and Raman spectroscopy analysis. The SiNWs (generated from (100) wafer) shows the best field emission property with turn-on field of 1.5 V / μm and 0.1 μA. On the other hand, SiNWs (generated from (111) wafer) shows the greatest Raman intensity. Finally, we make the top parts of SiNWs (generated from (100) wafer) successfully displaced to CuNWs directly. It is feasible to apply as interconnection, plasmonic photon, and bio-sensor.

    Content I List of Figures III List of tables IX 摘要 X Abstract XII Acknowledgements XIV Chapter 1 Introduction 1 1.1 Silicon nanowires 1 1.2 Motivation and goals 3 Chapter 2 Synthesis of Silicon Nanowires 6 2.1 Solidification 6 2.1.1 Vapor-liquid-solid process 6 2.1.2 Solid-liquid-solid process 9 2.1.3 Oxide-Assisted Growth method 11 2.2 Electroless Metal Deposition Method 13 2.2.1 Wet-etching process 13 2.3 Selective copper metallization by electrochemical contact displacement 18 Chapter 3 Taguchi method 20 3.1 Introduction 20 3.2 Benefits and applications of using the Taguchi method 22 3.3 Steps in performing a Taguchi experiment 22 3.4 Statistical analysis and interpretation of results 25 3.5 Determination of the optimal control factor settings 27 3.6 Analysis of variance 27 Chapter 4 Experimental Procedures 30 4.1 Purpose 30 4.2 Design the parameter 30 4.2.1 Determine the character of property 30 4.2.2 Determine the experimental factors 31 4.2.3 Design the matrix of experiment 32 4.3 The execution of experiment 34 4.3.1 SiNWs fabrication 34 4.3.2 Data collection (diameter analysis) 35 4.3.3 Confirmation of experiment 37 4.4 Displacement of copper nanowires 37 4.5 Prepare different crystal orientation of silicon wafer 37 4.5.1 Wet-etching process 37 4.5.2 TEM analysis 38 4.5.3 Field emission analysis 39 4.5.4 Raman spectra analysis 40 Chapter 5 Results and Discussion 41 5.1 Single crystalline silicon nanowires arrays via AgNO3-HF system 41 5.1.1 Length control of SiNWs 41 5.2 Growth direction dependence of silicon nanowires 53 5.2.1 Crystal orientation analysis of different Si-oriented wafer 53 5.2.2 Morphology analysis of different Si-oriented wafer 57 5.3 Size control of silicon nanowires 64 5.4 Field emission of silicon nanowires 75 5.5 Raman spectra of silicon nanowires 80 5.6 Displacement of copper nanowires 84 5.6.1 Morphology analysis 84 Chapter 6 Conclusions 90 Chapter 7 Reference 92

    1 Ellis, R. S. Wagner and W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 4, 89 (1964).
    2 D.P. Yua; , Y.J. Xinga;b, Q.L. Hanga, H.F. Yana, J. Xua, Z.H. Xib, S.Q. Fenga, Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism. Physica E 9, 305 (2001).
    3 Trentler, Timothy J. et al., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 270 (5243), 1791 (1995).
    4 Rui-Qin Zhang, Yeshayahu Lifshitz, and Shuit-Tong Lee, Oxide-Assisted Growth of Semiconducting Nanowires. Adv. Mater. 15, 635 (2003).
    5 Weber, W. M. et al., Silicon nanowires: catalytic growth and electrical characterization. Physica Status Solidi B-Basic Solid State Physics 243 (13), 3340 (2006).
    6 Lieber*, Alfredo M. Morales and Charles M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. SCIENCE 270, 208 (1998).
    7 K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xiu, S. T. Lee, and J. Zhu, Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Adv. Funct. Mater. 16, 387 (2006).
    8 Iijima, Sumio, Helical microtubules of graphitic carbon. Nature 354 (6348), 56 (1991).
    9 Cui, Yi and Lieber, Charles M., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 291 (5505), 851 (2001).
    10 Misewich, J. A. et al., Electrically Induced Optical Emission from a Carbon Nanotube FET. Science 300 (5620), 783 (2003).
    11 Duan, Xiangfeng et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409 (6816), 66 (2001).
    12 Gudiksen, Mark S. et al., Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415 (6872), 617 (2002).
    13 Pavesi, Lorenzo, Routes toward silico-based lasers. materialstoday, 18 (2005).
    14 Jayadevan, K. P. and Tseng, T. Y., One-dimensional semiconductor nanostructures as absorber layers in solar cells. Journal of Nanoscience and Nanotechnology 5 (11), 1768 (2005).
    15 Niklas Elfstro2m, *, † Robert Juhasz,†,‡ Ilya Sychugov,† Torun Engfeldt,§Amelie Eriksson Karlstro2m,§ and Jan Linnros†, Surface Charge Sensitivity of Silicon Nanowires: Size Dependence. Nano Lett. 7, 2608 (2007).
    16 z. li, b. rajendran t.i. kamins x. li y. chen r. stanley williams, Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics a-Materials Science & Processing 80, 1257 (2005).
    17 Kuiqing Peng, Hui Fang Juejun Hu Yin Wu Jing Zhu Yunjie Yan ShuitTong Lee, Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chemistry - A European Journal 12 (30), 7942 (2006).
    18 Jiju Antony, Frenie Jiju Antony, Teaching the Taguchi method to industrial engineers. Work Study 50, 141 (2001).
    19 Schwoebel, P. R. and Brodie, I., SURFACE-SCIENCE ASPECTS OF VACUUM MICROELECTRONICS. Journal of Vacuum Science & Technology B 13 (4), 1391 (1995).
    20 Yang*, Yiying Wu and Peidong, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc. 123, 3165 (2001).
    21 Yiying Wu, Haoquan Yan, Michael Huang, Benjamin Messer, Jae Hee Song, and Peidong Yang*, Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties. Chem. Eur. J. 8, 1261 (2002).
    22 S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, and C. S. Lee Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503 (1999).
    23 R.Q. Zhang), T.S. Chu, H.F. Cheung, N. Wang, S.T. Lee, Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Materials Science and Engineering C 16, 31 (2001).
    24 Shi, W. S. et al., Microstructures of gallium nitride nanowires synthesized by oxide-assisted method. Chemical Physics Letters 345 (5-6), 377 (2001).
    25 Xie, T. et al., Characterization and growth mechanism of germanium nitride nanowires prepared by an oxide-assisted method. Journal of Crystal Growth 283 (3-4), 286 (2005).
    26 Shi, W. S. et al., A general synthetic route to III-V compound semiconductor nanowires. Advanced Materials 13 (8), 591 (2001).
    27 Zhiqiang Gao, * Ajay Agarwal, Alastair D. Trigg, Navab Singh, Cheng Fang, Chih-Hang Tung, Yi Fan, Kavitha D. Buddharaju, and Jinming Kong, Silicon Nanowire Arrays for Label-Free Detection of DNA. Anal. Chem. 79, 3291 (2007).
    28 K. Q. Peng, Zhipeng Huang, and Jing Zhu, Fabrication of large-Area Silicon Nanowire p-n Junction Diode Arrays. Adv. Mater. 16, 73 (2004).
    29 K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Synhesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry. Adv. Mater. 14, 1164 (2002).
    30 K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Depositon. Adv. Funct. Mater. 13, 127 (2003).
    31 k. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angew. Chem. Int. Ed. 44, 2737 (2005).
    32 Yosi Shacham-Diamand, Sergey Lopatin, Integrated electroless metallization for ULSI Electrochimica Acta 44, 3639 (1999).
    33 T. Gao, G.W. Meng, J. Zhang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition Appl. Phys. A 73, 251 (2001).
    34 Yin-Ping Lee, Ming-Shih Tsai, Selective Copper Metallization by Electrochemical Contact Displacement with Amorphous Silicon Film. Electrochemical and Solid-State Letters 4, 1 (2001).
    35 蘇朝墩, 品質工程. 中華民國品質學會 (2002).
    36 Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber*, High Performance Silicon Nanowire Field Effect Transistors. Nano Lett. 3, 149 (2003).
    37 Zeng, B. Q. et al., Field emission of silicon nanowires. Applied Physics Letters 88 (21) (2006).
    38 Wanekaya, A. K., Chen, W., Myung, N. V., and Mulchandani, A., Nanowire-based electrochemical biosensors. Electroanalysis 18 (6), 533 (2006).
    39 Colli, A. et al., Synthesis and optical properties of silicon nanowires grown by different methods. Applied Physics a-Materials Science & Processing 85 (3), 247 (2006).
    40 Peng, K. Q. and Zhu, J., Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta 49 (16), 2563 (2004).
    41 Wu, Y. et al., Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nano Lett. 4 (3), 433 (2004).
    42 C.-P. Li, C. S. Lee X. L. Ma N. Wang R. Q. Zhang S. T. Lee, Growth Direction and Cross-Sectional Study of Silicon Nanowires. Advanced Materials 15 (7-8), 607 (2003).
    43 M. Christophersen, a, z J. Carstensen,a S. Ro¨nnebeck,a C. Ja¨ger,b W. Ja¨ger,b and and H. Fo¨lla, *, Crystal Orientation Dependence and Anisotropic Properties of Macropore Formation of p- and n-Type Silicon. Journal of The Electrochemical Society 148, E267 (2001).
    44 S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 1st ed. .Wiley, New York, Ch. 1. (1983).
    45 Foll, H., Christophersen, M., Carstensen, J., and Hasse, G., Formation and application of porous silicon. Materials Science & Engineering R-Reports 39 (4), 93 (2002).
    46 Z. Huang, H. Fang J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Advanced Materials 19 (5), 744 (2007).
    47 Chun Lia, Guojia Fanga, , Su Shenga, Zhiqiang Chena, Jianbo Wangb, Shuang Maa, Xingzhong Zhaoa, Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays. Physica E 30, 169 (2005).
    48 C.S. Chang, S. Chattopadhyay, L.C. Chen, K.H. Chen, C.W. Chen, Y.F. Chen, R. Collazo, Z. Sitar,, Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates Phy. Rev. B 68, 125322 (2003).
    49 Y. Cheng, O. Zhou, Electron field emission from carbon nanotubes. C. R. Physique 4, 1021 (2003).
    50 Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308 (1997).
    51 Zuev, V. S., Frantsesson, A. V., Gao, J., and Eden, J. G., Enhancement of Raman scattering for an atom or molecule near a metal nanocylinder: Quantum theory of spontaneous emission and coupling to surface plasmon modes. Journal of Chemical Physics 122 (21) (2005).
    52 Hitoshi Morinaga, Kakoto Suyama, Mechanism of Metallic Particle Growth and Metal-Induced Pitting on Si Wafer Surface in Wet Chemical Processing J. Electrochem. Soc 141, 2834 (1994).
    53 M. K. Lee, J. J. Wang, and H. D. Wang, Deposition of Copper Films on Silicon from Cupric Sulfate and Hydrofluoric Acid. J. Electrochem. Soc 144, 1777 (1997).
    54 G.. Li, E. A. Kneer, B. Vermeire, Comparative Electrochemical Study of Copper Deposition onto Silicon from Dilute and Buffered Hydrofluoric Acids. J. Electrochem. Soc 145, 241 (1998).
    55 Oliver M, R. Chyan, Jin-Jian Chen, Copper Deposition on HF Etched Silicon Surfaces- Morphological and Kinetic Studies. J. Electrochem. Soc 143, 92 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE