簡易檢索 / 詳目顯示

研究生: 劉彥廷
Liu, Yan-Ting
論文名稱: 透過電漿子增益層優化與鎳/氮化鈦異質結構工程提升一維硫化鎘光觸媒的光催化產氫效率與耐久性
Enhanced Photocatalytic Hydrogen Yield and Durability of One-Dimensional CdS Photocatalysts via Plasmonic Layer Optimization and Ni/TiN Heterostructure Engineering
指導教授: 陳力俊
Chen, Lih-Juann
口試委員: 鄭晃忠
Cheng, Huang-Chung
吳文偉
Wu, Wen-Wei
呂明諺
Lu, Ming-Yen
陳智彥
Chen, Chih-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 88
中文關鍵詞: 光催化分解水電漿子薄膜工程鎳/氮化鈦異質結構一維硫化鎘奈米線產氫
外文關鍵詞: Photocatalytic water splitting, Plasmonic layer engineering, Ni/TiN heterostructure, 1D CdS nanowire, Hydrogen production
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於開發具有優異光催化性能與耐久度的硫化鎘(CdS)一維光觸媒材料。研究採用兩種優化方法進行。第一種方法著重於調整電漿增益層TiN的厚度,以提升光催化水分解產氫的效率和耐久度,並透過光譜分析來探討增益層作為基層或外層包覆的影響,以及驗證電漿子效應主導產氫表現。第二種方法則深入探討Ni/TiN異質結構對光電和光催化特性的影響,發現不同層序的排列會導致顯著差異。此外,Ni/TiN異質結構展現出協同效應,顯著提升產氫效率與催化活性。此方式確立了電子壽命為關鍵因素,並觀測到還原反應的活化位點,進而提出合理的能帶結構和物理模型,以闡明整體催化反應過程,提供更完整的機制解釋。
    在實驗部分,採用了多種表徵技術,包括紫外-可見光光譜(UV-vis)、光致放光(PL)搭配單光子計數系統(TCSPC)、穿透式電子顯微鏡(TEM)等,以觀測催化反應中的變化與現象,確認光觸媒的結構和形貌。此外,利用X射線光電子能譜(XPS)和紫外光電子能譜(UPS)分析鍵結和電子結構的變化,並結合全內反射超解析顯微技術(TIRF SRM)與氣相層析(GC)氫氣測量系統,以定量產氫量並評估催化性能。
    本研究為硫化鎘在水分解光催化中的長期應用提供了解決方案,並展示了新型電漿子材料氮化鈦(TiN)在能源領域應用的潛力,為相關物理模型、化學機制及機械學習方法的推廣與驗證奠定了基礎。


    This study aims to develop a one-dimensional cadmium sulfide (CdS) photocatalyst material with excellent photocatalytic performance and durability. The research involves two optimization approaches. The first approach focuses on adjusting the thickness of the plasmonic enhancement layer TiN to improve hydrogen production efficiency in photocatalytic water splitting, analyzing the effects of placing the enhancement layer as a base or coating through spectral analyses. It identifies the plasmonic effect as the major factor to influence hydrogen production. The second approach delves into the impact of the Ni/TiN heterostructure on photoelectronic and photocatalytic properties, revealing that variation in layer sequence leads to significant differences. The Ni/TiN heterostructure demonstrates a synergistic effect, notably improving hydrogen production efficiency and durability. It confirms electron lifetime as a critical factor and determines active sites for the reduction reaction, proposing a rational band structure and physical model to elucidate the overall catalytic reaction process, thereby providing a more comprehensive mechanistic explanation. In the experimental part, various characterization techniques are employed to observe changes and phenomena in the catalytic reactions, confirming the structure and morphology of the photocatalyst. The techniques include ultraviolet-visible spectroscopy (UV-vis), photoluminescence (PL) with time-correlated single-photon counting (TCSPC), and transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) are used to analyze bonding and electronic structure changes. Total internal reflection super-resolution microscopy (TIRF SRM) and a hydrogen measurement analysis system with gas chromatography (GC) are also employed to quantify hydrogen production and evaluate catalytic performance.
    This research provides a solution for the long-term application of CdS as a photocatalyst in water splitting and demonstrates the potential of the novel plasmonic material TiN in the energy field, laying the foundation for the development and validation of related physical models, chemical mechanisms, and machine learning methods.

    Table of Contents Acknowledgements iv 致謝 vii Abstract x 中文摘要 xii Table of Contents xiii Chapter 1 Motivations and Introduction 1 1.0 Motivations 1 1.1 Hydrogen Energy 2 1.2 Background Knowledge 2 1.2.1 Photocatalytic Water Splitting (PWS) 2 1.2.2 Plasmonic Materials 3 1.3 Target Materials 5 1.3.1 Cadmium Sulfide (CdS) 5 1.3.2 Titanium Nitride (TiN) 6 1.3.3 Heterojunction of CdS-TiN 9 1.4 Effect of Ni on the CdS 11 1.5 Effect of Ni/TiN on the CdS 12 1.6 Backbone of Research 12 Chapter 2 Experimental Methods and Characterization Techniques 14 2.1 Synthesis and Material Preparation 14 2.1.1 Fabricating Process of CdS Nanowires on TiN Nanolayer (CSN) 14 2.2.2 Fabricating Process of Core-Shell CdS-TiN Nanowires (CT) 14 2.2.3 Fabricating Process of CdS-Ni-TiN (CNT) 15 2.2 Fabrication Techniques 16 2.2.1 Electron Gun Evaporation 16 2.2.2 Chemical Vapor Deposition (CVD) 17 2.3 Characterization Techniques 20 2.3.1 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) Analysis 20 2.3.2 X-ray Diffraction (XRD) Spectroscopy 21 2.3.3 Transmission Electron Microscopy Observation (TEM) 22 2.3.4 Ultraviolet-visible (Uv-vis) Spectroscopy 24 2.3.5 Raman Spectroscopy 24 2.3.6 Time-Resolved Photoluminescence (TRPL) Spectroscopy 25 2.3.7 X-ray Photoelectron Spectroscopy (XPS) 27 2.3.8 Scanning Probe Microscopy - AFM mode (SPM-AFM) 28 2.3.9 Probe Station and Semiconductor Characterization Configuration 29 2.3.10 Gas Chromatography (GC) for Hydrogen Production 30 2.3.11 Apparent Quantum Efficiency and Solar to Hydrogen Ratio Calculation 33 2.3.12 Single Molecule Total Internal Reflection Fluorescence Super-Resolution Microscopy 34 Chapter 3 TiN Overlayer on CdS - Plasmonic Enhancement and Spectral Analysis 35 3.1 Hydrogen Production & Efficiency Analysis 35 3.2 Materials Characterizations 37 3.2.1 Morphology, Structures, and Compositions 37 3.2.2 Optoelectronic Properties of CSN Configuration 42 3.2.3 Optoelectronic Properties of CT Configuration 43 3.2.4 Electrical Properties Analysis of TiN layer 47 3.3 Surface Plasmonic Electric Field from FDTD Simulations 47 3.4 Mechanisms Discussion 49 Chapter 4 Results & Discussion of Synergistic Effect of TiN/Ni Overlayers on CdS 53 4.1 Hydrogen Production & Efficiency Analysis 53 4.2 Optical Factors from FDTD Simulation 55 4.3 Materials Characterizations 58 4.3.1 Morphology, Structures, and Compositions 58 4.3.2 Spectra for Optoelectronic Properties 61 4.4 Photocatalytic Activity and Active Sites of CdS & CNT 69 4.5 Mechanisms Discussion 71 Chapter 5 Conclusions 75 Chapter 6 Future Prospects 76 References 80 Curriculum Vitae 87

    (1) Fawcett, A. A.; Iyer, G. C.; Clarke, L. E.; Edmonds, J. A.; Hultman, N. E.; McJeon, H. C.; Rogelj, J.; Schuler, R.; Alsalam, J.; Asrar, G. R.; Creason, J.; Jeong, M.; McFarland, J.; Mundra, A.; Shi, W. Can Paris Pledges Avert Severe Climate Change? Science (80). 2015, 350 (6265), 1168–1169. https://doi.org/10.1126/science.aad5761.
    (2) Winter, C. J.Hydrogen Energy - Abundant, Efficient, Clean: A Debate over the Energy-System-of-Change. Int. J. Hydrogen Energy 2009, 34 (14 SUPPL. 1), 1–52. https://doi.org/10.1016/j.ijhydene.2009.05.063.
    (3) Liu, G.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research Advances towards Large-Scale Solar Hydrogen Production from Water. EnergyChem 2019, 1 (2), 100014. https://doi.org/10.1016/j.enchem.2019.100014.
    (4) Yuan, L.; Han, C.; Yang, M. Q.; Xu, Y. J. Photocatalytic Water Splitting for Solar Hydrogen Generation: Fundamentals and Recent Advancements. Int. Rev. Phys. Chem. 2016, 35 (1), 1–36. https://doi.org/10.1080/0144235X.2015.1127027.
    (5) Bolton, J. R.; Stricklert, S. J.; Connolly, J. Of Solar Photolysis of Water. Nature 1985, 316, 495–500. https://doi.org/10.1038/316495a0.
    (6) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-Photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24 (2), 229–251. https://doi.org/10.1002/adma.201102752.
    (7) Cao, S.; Piao, L.; Chen, X. Emerging Photocatalysts for Hydrogen Evolution. Trends Chem. 2020, 2 (1), 57–70. https://doi.org/10.1016/j.trechm.2019.06.009.
    (8) Fajrina, N.; Tahir, M. A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44 (2), 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200.
    (9) Akira, F.; Kenichi, H. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37–38. https://doi.org/10.1038/238037a0.
    (10) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110 (11), 6503–6570. https://doi.org/10.1021/cr1001645.
    (11) Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S. Review of One-Dimensional and Two-Dimensional Nanostructured Materials for Hydrogen Generation. Phys. Chem. Chem. Phys. 2015, 17 (5), 2960–2986. https://doi.org/10.1039/c4cp04245j.
    (12) Willets, K. A.; VanDuyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607.
    (13) Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33 (6), 1–19. https://doi.org/10.1002/adma.202000086.
    (14) Sarina, S.; Jaatinen, E.; Xiao, Q.; Huang, Y. M.; Christopher, P.; Zhao, J. C.; Zhu, H. Y. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction. J. Phys. Chem. Lett. 2017, 8 (11), 2526–2534. https://doi.org/10.1021/acs.jpclett.7b00941.
    (15) Zhao, J.; Nguyen, S. C.; Ye, R.; Ye, B.; Weller, H.; Somorjai, G. A.; Alivisatos, A. P.; Dean Toste, F. A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. ACS Cent. Sci. 2017, 3 (5), 482–488. https://doi.org/10.1021/acscentsci.7b00122.
    (16) Zhang, Y. J.; Radjenovic, P. M.; Zhou, X. S.; Zhang, H.; Yao, J. L.; Li, J. F. Plasmonic Core–Shell Nanomaterials and Their Applications in Spectroscopies. Adv. Mater. 2021, 2005900, 1–19. https://doi.org/10.1002/adma.202005900.
    (17) Li, X.; Kahn, E.; Kahn, E.; Chen, G.; Sang, X.; Lei, J.; Passarello, D.; Oyedele, A. D.; Zakhidov, D.; Chen, K. W.; Chen, Y. X.; Hsieh, S. H.; Fujisawa, K.; Unocic, R. R.; Xiao, K.; Salleo, A.; Toney, M. F.; Chen, C. H.; Kaxiras, E.; Terrones, M.; Yakobson, B. I.; Harutyunyan, A. R. Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano 2020, 14 (6), 6570–6581. https://doi.org/10.1021/acsnano.0c00132.
    (18) Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10 (1), 25–34. https://doi.org/10.1038/nnano.2014.311.
    (19) Rajeswari, R.; Jothilakshmi, R. Modeling and Simulation of Plasmonic Nanoparticles Using Finite-Difference Time-Domain Method: A Review. Mater. Sci. Forum 2014, 781, 33–44. https://doi.org/10.4028/www.scientific.net/MSF.781.33.
    (20) Chung, T.; Lee, S. Y.; Song, E. Y.; Chun, H.; Lee, B. Plasmonic Nanostructures for Nano-Scale Bio-Sensing. Sensors 2011, 11 (11), 10907–10929. https://doi.org/10.3390/s111110907.
    (21) Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic Photocatalysis. Reports Prog. Phys. 2013, 76 (4). https://doi.org/10.1088/0034-4885/76/4/046401.
    (22) Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical Transformations on Plasmonic Metal Nanoparticles. Nat. Mater. 2015, 14 (6), 567–576. https://doi.org/10.1038/nmat4281.
    (23) Kale, M. J.; Avanesian, T.; Christopher, P. Direct Photocatalysis by Plasmonic Nanostructures. ACS Catal. 2014, 4 (1), 116–128. https://doi.org/10.1021/cs400993w.
    (24) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111 (6), 3669–3712. https://doi.org/10.1021/cr100275d.
    (25) Wells, A. F. Structural Inorganic Chemistry. Nature 1971, 229 (5285), 453. https://doi.org/10.1038/229453c0.
    (26) Biondi, M. A. Optical and Infrared Absorption of Copper at 4.2A°K [7]. Phys. Rev. 1954, 96 (2), 534–535. https://doi.org/10.1103/PhysRev.96.534.
    (27) Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111 (35), 13280–13287. https://doi.org/10.1021/jp072683b.
    (28) Qingqing, W.; Gang, X.; Gaorong, H. Solvothermal Synthesis and Characterization of Uniform CdS Nanowires in High Yield. J. Solid State Chem. 2005, 178 (9), 2680–2685. https://doi.org/10.1016/j.jssc.2005.06.005.
    (29) Li, Y.; Hu, Y.; Peng, S.; Lu, G.; Li, S. Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2009, 113 (21), 9352–9358. https://doi.org/10.1021/jp901505j.
    (30) Li, H.; Wang, X.; Xu, J.; Zhang, Q.; Bando, Y.; Golberg, D.; Ma, Y.; Zhai, T. One-Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Adv. Mater. 2013, 25 (22), 3017–3037. https://doi.org/10.1002/adma.201300244.
    (31) Ning, X.; Lu, G. Photocorrosion Inhibition of CdS-Based Catalysts for Photocatalytic Overall Water Splitting. Nanoscale 2020, 12 (3), 1213–1223. https://doi.org/10.1039/c9nr09183a.
    (32) Kužel, R.; Černý, R.; Valvoda, V.; Blomberg, M.; Merisalo, M. Complex XRD Microstructural Studies of Hard Coatings Applied to PVD-Deposited TiN Films Part I. Problems and Methods. Thin Solid Films 1994, 247 (1), 64–78. https://doi.org/10.1016/0040-6090(94)90477-4.
    (33) Comin, A.; Manna, L. New Materials for Tunable Plasmonic Colloidal Nanocrystals. Chem. Soc. Rev. 2014, 43 (11), 3957–3975. https://doi.org/10.1039/c3cs60265f.
    (34) Zeng, Y.; Russell, S. W.; McKerrow, A. J.; Chen, L.; Alford, T. L. Effectiveness of Ti, TiN, Ta, TaN, and W2N as Barriers for the Integration of Low-k Dielectric Hydrogen Silsesquioxane. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2000, 18 (1), 221. https://doi.org/10.1116/1.591176.
    (35) Ostling, M.; Nygren, S.; Petersson, C. S.; Norstrom, H.; Berg, S. A comparative study of the diffusion barrier properties of TiN and ZrN. Thin Solid Films. 1986, 145, 81–88. https://doi.org/10.1016/0040-6090(86)90254-3
    (36) Fischer, a H.; Aubel, O.; Methodology, R.; Devices, A. M.; Junction, E.; Fishkill, E.; Reliability Challenges in Copper Metallizations arising with the PVD Resputter Liner Engineering for 65nm and Beyond. 2007 IEEE International Reliability Physics Symposium Proceedings. 2007, 4–8. http://doi.org/0.1109/RELPHY.2007.369943.
    (37) Majhi, P.; Wen, H. C.; Choi, K.; Alshareef, H.; Huffman, C.; Lee, B. H. A Systematic Study of the Influence of Nitrogen in Tuning the Effective Work Function of Nitrided Metal Gates. 2005 IEEE VLSI-TSA - Int. Symp. VLSI Technol. - VLSI-TSA-TECH, Proc. Tech. Pap. 2005, 105–106. https://doi.org/10.1109/VTSA.2005.1497097.
    (38) Evangelou, E. K.; Konofaos, N.; Aslanoglou, X. A.; Dimitriadis, C. A.; Patsalas, P.; Logothetidis, S.; Kokkoris, M.; Kossionides, E.; Vlastou, R.; Groetschel, R. Characterization of Magnetron Sputtering Deposited Thin Films of TiN for Use as a Metal Electrode on TiN/SiO2/Si Metal-Oxide-Semiconductor Devices. J. Appl. Phys. 2000, 88 (12), 7192–7196. https://doi.org/10.1063/1.1322068.
    (39) Guo, W. P.; Mishra, R.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Lin, M. T.; Gwo, S. Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold. ACS Photonics 2019, 6 (8), 1848–1854. https://doi.org/10.1021/acsphotonics.9b00617.
    (40) Sheldon, M. T.; DeGroep, J.Van; Brown, A. M.; Polman, A.; Atwater, H. A. Plasmoelectric Potentials in Metal Nanostructures. Science (80-. ). 2014, 346 (6211), 828–831. https://doi.org/10.1126/science.1258405.
    (41) Dionne, J. A.; Diest, K.; Sweatlock, L. A.; Atwater, H. A. PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator. Nano Lett. 2009, 9 (2), 897–902. https://doi.org/10.1021/nl803868k.
    (42) Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8 (4), 247–251. https://doi.org/10.1038/nnano.2013.18.
    (43) Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X.; Jiang, M.H Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Adv. Funct. Mater. 2013, 23 (43), 5444–5450. https://doi.org/10.1002/adfm.201300486.
    (44) Aubry, A.; Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Maier, S. A.; Pendry, J. B. Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum. Nano Lett. 2010, 10 (7), 2574–2579. https://doi.org/10.1021/nl101235d.
    (45) Atwater, H. A.; Polman, A. Erratum: Plasmonics for Improved Photovoltaic Devices (Nature Materials (2010) 9 (205-213)). Nat. Mater. 2010, 9 (10), 865. https://doi.org/10.1038/nmat2866.
    (46) Zheng, P.; Zhao, J.; Zheng, J.; Ma, G.; Zhu, Z. Non-Equilibrium Partial Oxidation of TiN Surface for Efficient Visible-Light-Driven Hydrogen Production. J. Mater. Chem. 2012, 22 (24), 12116–12120. https://doi.org/10.1039/c2jm30662j.
    (47) Naldoni, A.; Guler, U.; Wang, Z.; Marelli, M.; Malara, F.; Meng, X.; Besteiro, L.V.; Govorov, A. O.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V. M. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5 (15), 1–11. https://doi.org/10.1002/adom.201601031.
    (48) Doiron, B.; Li, Y.; Mihai, A.; Bower, R.; Alford, N. M. N.; Petrov, P. K.; Maier, S. A.; Oulton, R. F. Plasmon-Enhanced Electron Harvesting in Robust Titanium Nitride Nanostructures. J. Phys. Chem. C 2019, 123 (30), 18521–18527. https://doi.org/10.1021/acs.jpcc.9b03184.
    (49) Ishii, S.; Sugavaneshwar, R. P.; Nagao, T. Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers. J. Phys. Chem. C 2016, 120 (4), 2343–2348. https://doi.org/10.1021/acs.jpcc.5b09604.
    (50) Shah, D.; Reddy, H.; Kinsey, N.; Shalaev, V. M.; Boltasseva, A. Optical Properties of Plasmonic Ultrathin TiN Films. Adv. Opt. Mater. 2017, 5 (13), 1–5. https://doi.org/10.1002/adom.201700065.
    (51) Luther, B. P.; Mohney, S. E.; Jackson, T. N. Titanium and Titanium Nitride Contacts to N-Type Gallium Nitride. Semicond. Sci. Technol. 1998, 13 (11), 1322–1327. https://doi.org/10.1088/0268-1242/13/11/017.
    (52) Didden, A.; Battjes, H.; MacHunze, R.; Dam, B.; Van DeKrol, R. Titanium Nitride: A New Ohmic Contact Material for n-Type CdS. J. Appl. Phys. 2011, 110 (3). https://doi.org/10.1063/1.3615946.
    (53) Liu, Y.; Zhu, T.; Lin, M.; Liang, Y.; Fu, J.; Wang, W. Nonmetal Plasmonic TiN Nanoparticles Significantly Boost Photoelectrochemical Performance for Hydrogen Evolution of CdS Nanoroad Array Photoanode. Renew. Energy 2021, 180, 1290–1299. https://doi.org/10.1016/j.renene.2021.09.050.
    (54) He, X.; Liu, Q.; Xu, D.; Wang, L.; Tang, H. Plasmonic TiN Nanobelts Assisted Broad Spectrum Photocatalytic H2 Generation. J. Mater. Sci. Technol. 2022, 116, 1–10. https://doi.org/10.1016/j.jmst.2021.10.033.
    (55) Chen, H.; Ye, K.; Zhang, W.; Fan, L.; Kong, F.; Zhao, R.; Chen, M. Nickel-Based Bifunctional Cocatalyst to Enhance CdS Photocatalytic Hydrogen Production. Langmuir 2023, 39 (51), 18935–18945. https://doi.org/10.1021/acs.langmuir.3c02855.
    (56) Qiu, S.; Guo, R.; Wang, Q.; Yang, F.; Han, Y.; Peng, X.; Yuan, H.; Wang, X. CdS Nanoflakes Decorated by Ni(OH)2 Nanoparticles for Enhanced Photocatalytic Hydrogen Production. Int. J. Energy Res. 2021, 45 (10), 14985–14994. https://doi.org/10.1002/er.6777.
    (57) Luo, M.; Liu, Y.; Hu, J.; Liu, H.; Li, J. One-Pot Synthesis of CdS and Ni-Doped CdS Hollow Spheres with Enhanced Photocatalytic Activity and Durability. ACS Appl. Mater. Interfaces 2012, 4 (3), 1813–1821. https://doi.org/10.1021/am3000903.
    (58) Yang, H.; Jin, Z.; Fan, K.; Liu, D. D.; Lu, G. The Roles of Ni Nanoparticles over CdS Nanorods for Improved Photocatalytic Stability and Activity. Superlattices Microstruct. 2017, 111, 687–695. https://doi.org/10.1016/j.spmi.2017.07.025.
    (59) Chai, Z.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. J. Am. Chem. Soc. 2016, 138 (32), 10128–10131. https://doi.org/10.1021/jacs.6b06860.
    (60) Ahmad, R.; Nutan, G. V.; Singh, D.; Gupta, G.; Soni, U.; Sapra, S.; Srivastava, R.Colloidal Lead-Free Cs2AgBiBr6 Double Perovskite Nanocrystals: Synthesis, Uniform Thin-Film Fabrication, and Application in Solution-Processed Solar Cells. Nano Res. 2021, 14 (4), 1126–1134. https://doi.org/10.1007/s12274-020-3161-6.
    (61) Pantaler, M.; Cho, K. T.; Queloz, V. I. E.; García Benito, I.; Fettkenhauer, C.; Anusca, I.; Nazeeruddin, M. K.; Lupascu, D. C.; Grancini, G. Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Lett. 2018, 3 (8), 1781–1786. https://doi.org/10.1021/acsenergylett.8b00871.
    (62) Wang, H.; Zhou, D.; Shen, S.; Wan, J.; Zheng, X.; Yu, L.; Phillips, D. L. The Photocatalytic Activity and Degradation Mechanism of Methylene Blue over Copper(Ii) Tetra(4-Carboxyphenyl) Porphyrin Sensitized TiO2 under Visible Light Irradiation. RSC Adv. 2014, 4 (55), 28978–28986. https://doi.org/10.1039/c4ra03979c.
    (63) Chen, Y. C.; Huang, Y. S.; Huang, H.; Su, P. J.; Perng, T. P.; Chen, L. J. Photocatalytic Enhancement of Hydrogen Production in Water Splitting under Simulated Solar Light by Band Gap Engineering and Localized Surface Plasmon Resonance of ZnxCd1-XS Nanowires Decorated by Au Nanoparticles. Nano Energy 2020, 67 (October 2019), 104225. https://doi.org/10.1016/j.nanoen.2019.104225.
    (64) Liu, Y. T.; Lu, M. Y.; Perng, T. P.; Chen, L. J. Plasmonic Enhancement of Hydrogen Production by Water Splitting with CdS Nanowires Protected by Metallic TiN Overlayers as Highly Efficient Photocatalysts. Nano Energy 2021, 89 (PB), 106407. https://doi.org/10.1016/j.nanoen.2021.106407.
    (65) Chen, Y.; Zhao, Y.; Ou, P.; Song, J. Basal Plane Activation of Two-Dimensional Transition Metal Dichalcogenides via Alloying for the Hydrogen Evolution Reaction: First-Principles Calculations and Machine Learning Prediction. J. Mater. Chem. A 2023, 11 (18), 9964–9975. https://doi.org/10.1039/d3ta01361h.
    (66) Zhang, H.; Dong, Y.; Zhao, S.; Wang, G.; Jiang, P.; Zhong, J.; Zhu, Y. Photochemical Preparation of Atomically Dispersed Nickel on Cadmium Sulfide for Superior Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2020, 261 (August 2019), 118233. https://doi.org/10.1016/j.apcatb.2019.118233.
    (67) Zhang, B.; Chen, C.; Liu, J.; Qiao, W.; Zhao, J.; Yang, J.; Yu, Y.; Chen, S.; Qin, Y. Simultaneous Ni Nanoparticles Decoration and Ni Doping of CdS Nanorods for Synergistically Promoting Photocatalytic H2 Evolution. Appl. Surf. Sci. 2020, 508 (August 2019). https://doi.org/10.1016/j.apsusc.2019.144869.
    (68) Ma, Y.; Liu, Y.; Bian, Y.; Zhu, A.; Yang, Y.; Pan, J. Controlling Shape Anisotropy of Hexagonal CdS for Highly Stable and Efficient Photocatalytic H2 Evolution and Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2018, 518, 140–148. https://doi.org/10.1016/j.jcis.2018.02.011.
    (69) Lin, Y.; Zhang, Q.; Li, Y.; Liu, Y.; Xu, K.; Huang, J.; Zhou, X.; Peng, F. The Evolution from a Typical Type-I CdS/ZnS to Type-II and Z-Scheme Hybrid Structure for Efficient and Stable Hydrogen Production under Visible Light. ACS Sustain. Chem. Eng. 2020, 8 (11), 4537–4546. https://doi.org/10.1021/acssuschemeng.0c00101.
    (70) Zhao, Y.; Shao, C.; Lin, Z.; Jiang, S.; Song, S. Low-Energy Facets on CdS Allomorph Junctions with Optimal Phase Ratio to Boost Charge Directional Transfer for Photocatalytic H2 Fuel Evolution. Small 2020, 16 (24), 1–5. https://doi.org/10.1002/smll.202000944.
    (71) Umer, M.; Umer, S.; Zafari, M.; Ha, M.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine Learning Assisted High-Throughput Screening of Transition Metal Single Atom Based Superb Hydrogen Evolution Electrocatalysts. J. Mater. Chem. A 2022, 10 (12), 6679–6689. https://doi.org/10.1039/d1ta09878k.
    (72) Li, Y.; Bahamon, D.; Sinnokrot, M.; Vega, L. F. Computational Screening of Transition Metal-Doped CdS for Photocatalytic Hydrogen Production. npj Comput. Mater. 2022, 8 (1). https://doi.org/10.1038/s41524-022-00922-4.
    (73) Song, P.; Jia, Z.; Lu, S.; Wang, Z.; Peng, T.; Gao, Z.; Bai, X.; Jiang, Q.; Cui, H.; Tian, W.; Feng, R.; Liang, Z.; Kang, Q.; Yuan, H. Enhanced Learning Loop Framework Accelerates Screening of Bimetallic Catalysts with High Oxygen Reduction Properties in Different Coordination Environments. Int. J. Hydrogen Energy 2024, 73 (March), 305–315. https://doi.org/10.1016/j.ijhydene.2024.06.040.
    (74) Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Photocatalytic Solar Hydrogen Production from Water on a 100-M2 Scale. Nature 2021, 598 (7880), 304–307. https://doi.org/10.1038/s41586-021-03907-3.

    QR CODE