研究生: |
陳勁誠 Chen, Ching-Cheng |
---|---|
論文名稱: |
應用近場與遠場麥克風陣列於 工具機噪音源識別 Noise source identification for machine tools using nearfield and farfield microphone arrays |
指導教授: |
白明憲
Bai, Mingsian R. |
口試委員: |
宋震國
張禎元 劉奕汶 涂季平 吳炤民 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 208 |
中文關鍵詞: | 噪音源識別 、聲場可視化 、波束成形 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出利用遠場及近場麥克風陣列來識別噪音源的位置及聲場可視化。遠場聲學影像的演算法包括延遲和相加法、最小變異無失真響應法和多重信號分類法被用來估測聲源位置以及方向。結果顯示多重信號分類法在定位噪音源位置上可以得到高解析度的影像。在近場陣列訊號處理中,一種來自離散單層位能方程式的稱作間接等效聲源法,和另一種來自離散赫姆茲積分方程式的稱作直接等效聲源法。在上述兩種等效聲源法的使用上,撤退距離與元素平均面積參數的選取是非常重要的。文中將透過黃金分割搜索法和模擬退火法去最佳化間接與直接等效聲源法的參數。透過基於狀態空間的遞迴運算,本文採用基於卡爾曼濾波器的狀態觀測器和基於粒子濾波狀態估計器去替代直接的逆運算。狀態觀測器和估計器能夠適應性的追踪聲場的動態變化,即使是存在噪音和擾動的環境下。
借助數學編程系統的方法下可以實現波束合成器的最佳權重係數和麥克風陣列的逆運算濾波器。其中遠場和近場麥克風陣列的問題可以被套用到壓縮取樣和凸優化的架構上。凸優化技術被有效的應用於波束形成器的設計,聲場的重建,聲源分離和模態分析在近場和遠場麥克風陣列中。如何設計能夠承受系統誤差的最佳化波束形成器在實際的應用上一直是一個關鍵問題。一般系統的誤差定義如下:如傳感器的不一致性、傳感器位置誤差和指向性誤差。本文從統計的角度檢驗了系統誤差對波束形成器性能的影響。由於在實際的應用中麥克風的數量是有限的,本文提出幾種聲場內插的技術,其中包含基於等效聲源法的內插法、欠定的等效聲源法、直接的基底函數法和基於基底函數的內插法。這些方法將會與直接的等效聲源法作比較。在基於基底函數法中,平面與球面波函數都被用來重建近場聲全息圖於不同的幾何聲源形狀。直接的基底函數法和基於基底函數的內插法採用壓縮取樣的技術進行內插。對於使用稀疏陣列的配置上,上述幾種聲場內插的技術能夠有效的強化聲場影像的解析度。透過模擬和實驗的結果,所提出的遠場及近場麥克風陣列方法被證明能夠有效地識別聲源在實際的案例中,包括木箱實驗,非接觸式模態分析和工具機實驗。
Farfield and nearfield microphone arrays are proposed for noise source identification (NSI) and sound field visualization (SFV). Farfield acoustic imaging algorithms including the delay and sum (DAS) algorithm, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are employed to estimate direction of arrival (DOA). Results show that the MUSIC algorithm can attain the highest resolution of localizing sound sources positions. In the nearefield array signal processing, one formulation derived from discretizing the simple layer potential is termed the indirect equivalent source model (ESM)-based nearfield acoustical holography (NAH), while another formulation derived from discretizing the Kirchhoff-Helmholtz integral equation is termed the direct ESM-based NAH. In the use of ESM NAH, the choice of parameters including retract distance and average area of element is of vital importance. These parameters are optimized, with the aid of the golden section search and parabolic interpolation (GSS-PI) algorithm and the simulated annealing (SA) algorithm, for the direct and indirect ESM formulations. Instead of directly solving the inverse problem, the forward problem is solved in a recursive manner akin to the approach adopted by using recursive Wiener filtering. The approaches proposed are based on a state-space formulation employing the Kalman filter-based state observer and particle filter-based state estimator. The state observer and estimator are adaptive in nature and capable of tracking dynamic variation of sound field, even in the presence of noises and perturbations.
Optimum weighting coefficients and inverse filters for microphone arrays can be accomplished, with the aid of a systematic methodology of mathematical programming. Both farfield and nearfield array problems are formulated in terms of compressive sampling (CS) and convex optimization (CVX) formalisms. CVX is applied to beamformer design, pressure field reconstruction, source separation and modal analysis with satisfactory performance in both nearfield and farfield microphone arrays. Design of optimal beamformers that withstand system errors such as channel mismatch, sensor position error, and pointing error has been a key issue in real-world applications of arrays. This thesis also examines the effects of system errors on beamformer performance from a statistical perspective. In practical applications where only patch array with scarce sensors are available, the ESM-based interpolation (ESM-IP), under-determined ESM (UD-ESM), direct basis function model (D-BFM) and BFM-based interpolation (BFM-IP) are proposed to reconstruct source velocity with sound filed interpolation. These methods were compared with the direct ESM (D-ESM) method. In the BFM-based NAH, basis functions including planar and spherical wave functions are used. CS is exploited in the BFM-IP and the D-BFM in light of CVX method. It is desirable to enhance the image resolution based on a sparse array configuration. As indicated by the simulation and experiment results, the proposed technique proved effective in identifying sources of many practical examples, including wooden box experiment, noncontact modal analysis of plate and machine tools.
[1] J. V. Candy, “Signal process in acoustics: science or Science Fiction?” Acoustics Today, J. Acoust. Soc. Am 4, 6-15 (2008).
[2] E. J. Sullivan and J. V. Candy, “Space-time processing of a moving array: A model-based approach.” J. Acoust. Soc. Am. 102, 754–765 (1998).
[3] J. V. Candy, Model-Based Signal Processing (John Wiley/IEEE Press, New Jersey, 2006), pp.281-366.
[4] M. Ochmann, “The source simulation technique for acoustic radiation problems,” Acustica. 81, 512–527 (1995).
[5] I. Y. Jeon and J. G. Ih, “On the holographic reconstruction of vibroacoustic fields using equivalent sources and inverse boundary element method,” J. Acoust. Soc. Am.118, 3475–3484 (2005).
[6] A. Sarkissian, “Extension of measurement surface in near-field acoustic holography,” J. Acoust. Soc. Am. 115, 1593–1596 (2004).
[7] A. Sarkissian, “Method of superposition applied to patch near-field acoustic holography,” J. Acoust. Soc. Am. 118, 671–678 (2005).
[8] J. J. Christensen and J. Hald, Beamforming, Brüel & Kjær Technical Review No. 1, (2004).
[9] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE 57, 1408-1418(1969).
[10] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. on Antenna Propag. AP-34, 276-280 (1986).
[11] E. G. Williams and J. D. Maynard, “Holographic imaging without the wavelength limit,” Physics Review Letters 45, 554–557 (1980).
[12] E. G. Williams, J. D. Maynard and E. Skudrzyk, “Sound source reconstructions using a microphone array,” J. Acoust. Soc. Am. 68, 340–344 (1980).
[13] E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustica Holography (Academic, San Diego, 1999), pp.149-291.
[14] G. T. Kim and B. H. Lee, “3-D sound source reconstruction and field reprediction using the Helmholtz integral equation,” J. Sound Vib. 136, 245–261 (1990).
[15] M. R. Bai, “Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries,” J. Acoust. Soc. Am. 92, 533–549 (1992).
[16] E. G. Williams, B. H. Houston, P. C. Herdic, S. T. Raveendra, and B. Gardner, “Interior NAH in flight, “ J. Acoust. Soc. Am. 108, 1451–1463 (2000).
[17] Z. Zhang, N. Vlahopoulos, S. T. Raveendra, T. Allen and K. Y. Zhang, “A computational acoustic field reconstruction process based on an indirect boundary element formulation,” J. Acoust. Soc. Am. 108, 2167–2178 (2000).
[18] Z. Zhang, N. Vlahopoulos, T. Allen, and K. Y. Zhang, “A source reconstruction process based on a indirect variational boundary element formulation,” Eng. Anal. Boundary Elem. 25, 93–114 (2001).
[19] A. Schuhmacher, J. Hald, K. B. Rasmussen and P. C. Hansen, “Sound source reconstruction using inverse boundary element calculations,” J. Acoust. Soc. Am. 113, 114–126 (2003).
[20] R. Steiner and J. Hald, “Near-field Acoustical Holography without the errors and limitations caused by the use of spatial DFT”, International J. Acoust. Vibr. 6(2), 83-89 (2001).
[21] J. Hald, Combined NAH and beamforming using the same array, Brüel & Kjær Technical Review No. 1 (2005).
[22] J. Hald, “Basic theory and properties of statistically optimized near-field acoustical holography,” J. Acoust. Soc. Am. 125, 2105–2120 (2009).
[23] Z. Wang and S. F. Wu, “Helmholtz equation-least-squares method for reconstruction the acoustic pressure field,” J. Acoust. Soc. Am. 102, 2020–2032 (1997).
[24] S. F. Wu, “On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method,” J. Acoust. Soc. Am. 107, 2511-2522 (2000).
[25] N. E. Rayess, “Development of acoustic holography using the Helmholtz equation-least squares (HELS) method,” Ph.D. thesis, Department of Mechanical Engineering, Wayne State University. 65–77 (2001).
[26] M. Moondra and S. F. Wu, “Visualization of vehicle interior sound field using HELS based NAH,” Noise Control Eng. J. 53, 146–154 (2005).
[27] G. H. Koopmann, L. Song and J. B. Fahnline, “A method for computing acoustic fields based on the principle of wave superposition”, J. Acoust. Soc. Am. 86, 2433-2438 (1989).
[28] L. Song, G. H. Koopmann and J. B. Fahnline, “Numerical errors associated with the method of superposition for computing acoustic fields,” J. Acoust. Soc. Am., 89, 2626-2633 (1991).
[29] J. B. Fahnline and G. H. Koopmann, “A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition,” J. Acoust. Soc. Am. 90, 2808–2819 (1991).
[30] P. C. Hansen, Rank-deficient and discrete ill-posed problems, pp. 99-187 (SIAM, Philadelphia, 1988).
[31] J. Mattingley and S. Boyd, Real-time convex optimization in signal processing, IEEE Signal Process. Mag. 27, 50-61 (2010).
[32] S. Boyd and L. Vandenberghe, Convex optimization, (Cambridge University Press, New York, 2004), Chap. 1-7.
[33] N. P. Valdivia and E. G. Williams, “Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography,” J. Acoust. Soc. Am. 120, 3694-3705 (2006).
[34] J. Gomes, J. Hald, P. Juhl and F. Jacobsen, “On the Applicability of the Spherical Wave Expansion with a Single Origin for Near-Field Acoustical Holography,” J. Acoust. Soc. Am. 125, 1529-1537 (2009).
[35] J. Gomes, Conformal Patch Holography. PhD thesis, 139-146 (Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, 2008)
[36] M. R. Bai and J. H. Lin, “Source identification system based on the time-domain nearfield equivalence source imaging: fundamental theory and implementation,” J. Sound Vib. 307, 202–225 (2007).
[37] M. R. Bai, C. C. Chen and J. H. Lin, “On optimal retreat distance for the equivalent source method-based nearfield acoustical holography,” J. Acoust. Soc. Am. 129, 1407-1416 (2011).
[38] W. A. Veronesi and J. D. Maynard, “Digital holographic reconstruction of sources with arbitrarily shaped surface,” J. Acoust. Soc. Am. 85 588-598 (1989).
[39] M. R. Bai, “Acoustical source characterization by using recursive Wiener filtering,” J. Acoust. Soc. Am. 97, 2657-2663 (1995).
[40] S. Haykin, Adaptive Filter Theory, 3rd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1986), pp.302-337.
[41] M. R. Bai and C. C. Chen, “Kalman filter-based microphone array signal processing using the equivalent source model,” J. Sound Vib. 331, 4940-4955 (2012).
[42] M. R. Bai, J.-G. Ih and J. Benesty, Acoustic Array Systems: Theory, Implementation, and Application, Wiley/IEEE Press, Singapore (2013), Chaps. 3-5.
[43] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. (2008).
[44] E. J. Candes, J. Romberg and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207-1223 (2006).
[45] E. J. Candes, J. Romberg and T. Tao, “Stable uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489-509 (2006).
[46] G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, and R. Gribonval, “Near-field acoustic holography using sparse regularization and compressive sampling principles,” J. Acoust. Soc. Am. 132, 1521-1534 (2012).
[47] J. Benesty, J. Chen and Y. Huang, Microphone arrays signal processing (Springer, New York, 2008), pp.85-114.
[48] M. Grant and S. Boyd, cvx, Version 1.21 matlab software for disciplined convex programming available at http://cvxr.com/cvx (last viewed February 14, 2012).
[49] T. Yardibia, C. Bahrb, N. Zawodnyb, F. Liub, L.N. Cattafesta and J. Li, “Uncertainty analysis of the standard delay-and-sum beamformer and array calibration,” J. Sound Vibrat. 329(13), 2654-2682(2010).
[50] P. Castellini and M. Martarelli, “Acoustic beamforming: Analysis of uncertainty and metrological performances,” Mech. Syst. Signal Pr. 22(3), 672-692 (2008).
[51] B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd ed., 271-272 (1988).
[52] R. Jeans and C. Mathews, “The wave superposition method as a robust technique for computing acoustic fields,” J. Acoust. Soc. Am. 92, 1156–1166 (1992).
[53] S. Kirkpatrick, C. D. Gelatt, C. D. Jr and M. P. Vecchi, “Optimization by simulated annealing,” Science, 220, pp.671-680 (1983).
[54] R. T. Eduardo, J. K. Hao and T. J. Jose, “An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem,” Computer and Operation Research, 35, 3331-3346 (2008).
[55] V. Murino, A. Trucco and C. S. Regazzoni, “Synthesis of unequally spaced arrays by simulated annealing,” IEEE Transactions Signal Processing, 44, 119–123 (1996).
[56] T. I. Laakso, V. Valimaki, M. Karjalainen and U. K. Laine, “Splitting the unit delay: Tools for fractional delay filter design,” IEEE Signal Processing Mag., 13, 30-60 (1996).
[57] J. N. Juang, Applied System Identification, (Prentice-Hall PTR, Englewood Cliffs, NJ, 1994), pp.133-148.
[58] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, Englewood Cliffs (1993), pp. 595.
[59] A. Keats, E. Yeeb and F. S. Lien, “Bayesian inference for source determination with applications to a complex urban environment,” Elsevier 41, 465-479 (2007).
[60] ITU-R Rec. BS.1116-1, “Methods for the subjective assessment of small impairments in audio systems including multichannel sound systems,” International Telecommunications Union, Geneva (1994).
[61] N. Bergman, A. Doucet and N. Gordon, “Optimal estimation and Cramer Rao bounds for partial non-Gaussian state space models,” Ann. Inst. Statist. Math. 53, 97-112 (2001).
[62] B. P. Carlin, N. G. Polson, and D. S. Stoffer, “A Monte Carlo approach to nonnormal and nonlinear state-space modeling,” J. Amer. Statist. Assoc. 87(418), 493–500 (1992).
[63] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” J. Comput. Graph. Statist. 5(1), 1–25 (1996).
[64] B. Ristic, S. Arulampalam and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, Boston London (2004), pp. 299.
[65] J. V. Candy, Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods, John Wiley & Sons, Hoboken, New Jersey (2009), pp. 445
[66] M. R. Bai, J. H. Lin and K. L. Liu, “Optimized microphone deployment for near-field acoustic holography: To be, or not to be random, that is the question,” J. Sound Vib., 329, 2809–2824 (2010).
[67] A. Leissa, Vibration of Plates, (Acoustical Society of America, New York, 1993), pp. 43-113.
[68] J. G. Wilpon, L. R. Rabiner, C. H. Lee and E. R. Goldman, “Automatic recognition of keyword in unconstrained speech using hidden Markov models,” IEEE Trans. Acoustics, Speech, Signal Proc., 38(11), 1870-1878 (1990).
[69] H. Ney, “The Use of a one-stage dynamic programming algorithm for connected word recognition,” IEEE Trans. Acoustics, Speech, Signal Proc., 32(2), 263-271 (1984).
[70] M. R. Bai, J. H. Lin and C. W. Tseng, “Implementation issues of the nearfield equivalent source imaging microphone array,” J. Sound Vib. 330, 545–558 (2011).
[71] M. C. Junger and D. Feit, Sound, Structures, and their Interaction. (MIT, London, 1986), pp. 86-112.