簡易檢索 / 詳目顯示

研究生: 李宗展
Tsung-Chan Li
論文名稱: 使用顏色及運動時間上之直方圖進行影片事件偵測
Video Event Detection Using Color and Motion Temporal Histogram
指導教授: 許秋婷
Chiou-Ting Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 57
中文關鍵詞: 事件偵測時間上直方圖
外文關鍵詞: event detection, temporal histogram
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為人們通常會對一些語義事件(semantic event)感興趣並且想去偵測他們,所以語義事件偵測是影像監視系統(video surveillance system)當中最重要的部分之一。這篇論文提出一個偵測特定事件(specific event)的方法。經過前景物體萃取(foreground object extraction)之後,我們得到每張影像畫面的前景遮罩(foreground mask)。我們便利用前景遮罩去計算前景顏色、背景顏色、運動量和運動方向的區塊時間上直方圖(block-based temporal histogram)。每個時間上直方圖用一個參數模型(GMM)模擬,並將GMM的參數當作特徵。利用這些GMM參數訓練一個HMM模型來偵測特定事件。因為直方圖表示法的特性,我們所提出的區塊時間上直方圖不易受到前景萃取所產生的雜訊和錯誤影響。而且,這種區塊時間上直方圖可以保留空間上的資訊,但是一般的直方圖表示法卻有缺少空間資訊的缺點。除了空間資訊,區塊時間上直方圖同時也包含了顏色和運動在時間上變化的資訊。時間資訊的效用將會在實驗結果中證明。


    Semantic event detection is one of the most important parts in video surveillance system, because people usually interest in some semantic events and desire to detect them. This thesis proposes a method to detect a specific event. After foreground object extraction, we get foreground mask for each video frame. With the foreground masks, we calculate the block-based temporal histograms for background color, foreground color, motion magnitude, and motion direction. Each temporal histogram is modeled by a parametric model, GMM, and the parameters of GMM are taken as features. With these GMM parameters, an HMM is trained to detect the specific event. Because of the properties of histogram representation, our proposed block-based temporal histogram is insensitive to noise and errors produced in foreground extraction. Furthermore, this block-based temporal histogram retains spatial information, but general histogram representation has the drawback of losing spatial information. Besides spatial information, the block-based temporal histogram incorporates the temporal information of color and motion as well. The effectiveness of temporal information will be proved in experimental results.

    List of Contents 中文摘要………………………………………………………………………………I Abstract………………………………………………………………………………II 1. INTRODUCTION 1 2. RELATED WORKS 4 2.1 Detection of Specific Events 4 2.1.1 Rule-Based Method 4 2.1.2 Non-Parametric Method 5 2.1.3 Parametric Method 6 2.2 Detection of Non-Specific Events 7 3. PREPROCESSING AND FEATURE EXTRACTION 12 3.1 Extraction of Foreground Objects 12 3.1.1 DCRF Model 13 3.1.2 Background Likelihood 14 3.1.3 Foreground Likelihood 15 3.1.4 Shadow Likelihood 15 3.2 Extraction of Color and Motion Feature 16 3.2.1 Temporal Histogram 17 3.2.2 Representation of Temporal Histogram 19 4. EVENT DETECTION BASED ON HMM 28 4.1 Fusion of Color and Motion Information 28 4.2 Training HMM 29 4.2.1 The Number of Hidden States 29 4.2.2 The Distribution of Observation 29 4.2.3 The Transition Probability 29 4.2.4 The Initial State Probability 30 4.2.5 The Observations 30 4.3 Event Detection Using HMM 30 5. EXPERIMENTAL RESULTS 32 5.1 Experimental Settings 32 5.2 Ground Truth and Evaluation 33 5.3 Results of Event Detection 33 5.4 Discussion 36 6. CONCLUSIONS 55 7. REFERENCES 56

    [1] C.C. Cheng and C.T. Hsu, “Fusion of Audio and Motion Information on HMM-Based Highlight Extraction for Baseball Games,“ IEEE Trans. Multimedia, vol. 8, no. 3, pp. 585-599, June 2006.
    [2] S.Y Yang, “A Study of Moving Objects Extraction for Surveillance Videos by Background-Subtraction Method,” Department of Computer Science, National Tsing Hua University, Taiwan, June 2006.
    [3] M. Cristani, M. Bicego, and V. Murino, “Audio-Visual Event Recognition in Surveillance Video Sequences,” IEEE Trans. Multimedia, vol. 9, no. 2, pp. 257-267, Feb. 2007.
    [4] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A System for Learning Statistical Motion Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1450-1464, Sep. 2006.
    [5] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Modeling Individual and Group Actions in Meetings with Layered HMMs,” IEEE Trans. Multimedia, vol. 8, no. 3, pp. 509-520, June 2006.
    [6] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” in Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1999.
    [7] T.P. Mann, “Numerically Stable Hidden Markov Model Implementation,” online tutorial, URL http://www.phrap.org/compbio/mbt599/hmm_scaling_revised.pdf, Feb. 2006.
    [8] X. Li, M. Parizeau, and R. Plamondon, “Training Hidden Markov Models with Multiple Observations – A Combinatorial Method,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 4, pp. 371-377, Apr. 2000.
    [9] Y. Wang, K. F. Loe, and J. K. Wu, “A Dynamic Conditional Random Field Model for Foreground and Shadow Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 279-289, Feb. 2006.
    [10] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no.5, May 2002, pp.603-619.
    [11] S. Ferrando, G. Gera, and C. Regazzoni, “Classification of Unattended and Stolen Objects in Video-Surveillance System,” in Proc. AVSS’06, 2006, pp. 21-26.
    [12] T. Wang, J. Li, Q. Diao, W. Hu, Y. Zhang, and C. Dulong,“Semantic Event Detection Using Conditional Random Fields,” in Proc. CVPRW’06, 2006, pp. 109-114.
    [13] T. Xiang and S. Gong, “Video Behaviour Profiling and Abnormality Detection without Manual Labelling,” in Proc. ICCV’05, 2005, vol. 2, pp. 1238-1245.
    [14] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-Supervised Adapted HMMs for Unusual Event Detection,” in Proc. CVPR’05, 2005, vol. 1, pp. 611-618.
    [15] L. Zelnik-Manor and M. Irani, “Statistical Analysis of Dynamic Actions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 9, Sep. 2006, pp. 1530-1535.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE