研究生: |
李東庭 Lee, Tung-Ting |
---|---|
論文名稱: |
藉由矽覆蓋層及電漿佈植氮化處理來改善具有純鍺虛擬基板之pMOSFET元件電特性研究 Enhanced electrical characteristics of pMOSFET with Virtual Ge Substrate by Si cap and using nitridation of plasma implantation |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 鍺 、電晶體 、氮化 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了持續改善MOSFET電晶體的性能,金氧半元件的尺寸被要求越來越小,在未來CMOS技術中等效氧化層厚度(EOT)甚至被要求縮小到1nm以下。然而當二氧化矽縮小到1.5nm以下時,閘極漏電流變得相當顯著且無法接受。High-k介電層已被廣泛應用來解決這個問題,因為較厚的介電層可以降低電子或電洞穿隧閘極介電層的可能性,進而減少漏電流。但是High-k材料仍然面臨一些技術性的挑戰,例如charge trapping和遷移率惡化...等問題。
為了解決這些問題而引伸出界面處理以及改變通道材料以提升載子遷移率...等方法。純鍺相對於矽而言,載子遷移率分別對電子提升了兩倍以及對電洞提升了四倍之多,對於元件的驅動電流可獲得大大得改善,因此鍺成為改善通道材料的首選之一。但是由於鍺的熱穩定性不佳,在400℃下會產生易揮發的氣體且容易水解,這種情況會降低元件的電特性,所以勢必要用其他鈍化方式來抑制鍺的擴散並且維持鍺通道元件的電特性。
首先實驗上我們使用了超高真空化學分子磊晶系統(ANALVA SRE-612 UHVCME)於矽基板上磊晶矽鍺(Si0.8Ge0.2)25nm形成虛擬基板以達成矽鍺通道MOSFET元件,接著在矽鍺上磊晶不同厚度(15nm~25nm)的矽覆蓋層,藉此探討不同矽覆蓋層厚度對元件的電特性影響。但是由於此矽覆蓋層厚度加上介電層厚度20nm在後續的S/D活化900℃, 30秒下無法有效阻擋鍺擴散,使得元件漏電流異常得大且無field effect。
為了改善上述問題,之後實驗樣品的S/D活化溫度均改為600℃、時間30分鐘。
第一部分我們依然探討磊晶不同矽覆蓋厚度對元件得電特性影響。實驗結果顯示,在使用35nm矽覆蓋層厚度的元件不管電特性或可靠度皆有較好的表現,顯示35nm矽覆蓋層在600℃下可有效阻擋鍺的擴散。
第二部分我們為了進一步提升元件電特性,針對由ALD成長的HfAlO/HfO2介電層施以電漿浸潤式離子佈植(PIII)的方式,由閘極上方摻雜N至介電層中,藉此探討不同氮化能量對元件電特性的影響。由實驗結果顯示,經過氮化處理的元件在電特性和可靠度上均得到提升,而氮化能量在5kev的元件則因佈植能量太高導致通道破壞,使得電特性表現下滑。
[1] H.–S. P. Wong, “Beyond the conventional transistor,” IBM J. RES. & DEV. VOL. 46 NO. 2/3 MARCH/MAY 2002
[2] S. M. Sze, “Physics of Semiconductor Devices”, Second printing July, p.469-486
[3] Yuan Taur, et al., First published 1998, Reprinted, p.161, 187, 1999.
[4] Buchanan, et al., Microelectron. Eng., Vol36, pp.13-20, 1997.
[5] H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, p.1223, Aug. 1996
[6] International Technology Roadmap for Semiconductor, 2003 edition.
[7] M. Houssa, et al,“Electrical Properties of High-k Gate Dielectrics:Challenges, Current Issues, and Possible Solutions”, Material Science and Enginerring R, p. 37-85, 2006
[8] Jack C.Lee, et al., “Ultra-thin Gate Dielectrics and High-k Dielectrics ”, IEEE EDS Vanguard Series of Independent Short Course, p. 202, 2001
[9] Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, p.1439, 5 March 2001
[10] A. I. Kingon, J. P.Maria, S. K. Streiffer, Nature 406, p.1032, 2000
[11] T. H. Hou , et al., Meeting of the Electrochemical Society, Salt, October 13, 2003
[12] 連健宏,“不同合金比例及堆疊高介電層之金氧半電晶體之電性研究”,國立清華大學工程與系統科學系,2008
[13] S. H. Bae, et al., IEEE Electron Device Lett. , vol 24, no. 9, 2003
[14] G. D. Wilk, R. M. Wallace, et al., J. Appl. Phys. 87, p.484, 2000
[15] G. D. Wilk, et al., J. Appl. Phys. 89, p.5243, 2001
[16] A. Kumar, D. Rajdev, et al., J. Am. Chem. Soc. 55, p.439, 1972
[17] C. Hobbs, et al., IEEE IEDM. 30.1.1, 2001
[18] S. Saito, et al., IEDM, p.7, 2003
[19] E Gusev,IEDM., MRS Bull, 2001
[20] S, Saito, et al., “Unified Mobility Model for High-K Gate Stacks”, IEEE IEDM, p. 797-800, 2003
[21] G.D. Wilk, et al., Symposium On VLSI Technology Digest of Technical, p.88, 2002
[22] F. De Smedt, et al., Journal of the Electrochemical Society, 146, 5, p.1873, 1999
[23] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
[24] Chee Wee Liu, et al.,“Mobility Enhancement Technology”, IEEE Circuit & Devices Magazine, 2005
[25] B. M. Haugerud, et al., “Mechanically Induced Strain Enhancement of Metal–Oxide–Semiconductor Field Effect Transistors”, J.Appl.Phys , Vol. 94, No. 6, 2003
[26] C. Claeys, et al.,“Processing and Defect Control in Advanced Ge Technologies ”, IEEE IEDST, 2007
[27] Koji Kita, et al.,“ Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics”, J.J.Appl.Phys, Vol. 47, p. 2349-2353, 2008
[28] T. Takahashi, et al.,“ Proof of Ge Interface Concepts for Metal/High-k/Ge CMOS”, IEEE, p. 697-700, 2007
[29] Yoshiki Kamata,“High-K/Ge MOSFETs for Future Nanoelectronics”, Materialstoday, Vol. 11, 2008
[30] W. P. Bai, et al., “ Si Interlayer Passivation on Germanium MOS Capacitors With High-K Dielectric and Metal Gate ”, IEEE Electron Device Letters, Vol. 26, p.378-380, 2005
[31] S. Petitdidier, et al.,“Growth Mechanism and Characterization of Chemical Oxide Films Produced in Peroxide Mixtures on Si(100) Surfaces”, Thin Solid Films,Vol. 476, p. 51-58, 2005
[32] W. J. Zhu et al., IEEE Electron Device Letters, Vol.25, NO.2, pp.89-91, 2004
[33] S. I. Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, pp.2357-2362, 1994
[34] R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, pp.109-115, 1995
[35] T.P.Ma, IEEE Trans. Electron Device, vol. 45, p.680, March 1998
[36] S. Mudanai, et al., IEEE Electron Device Lett. ,Vol 23,pp.728-0,2002
[37] D.K. Schroder, “Semiconductor material and device characterization,” John wiley & Sons, pp.337-8,1998
[38] P.O. Hahn, et al., J.Vac. Sci. Technol. A, Vol 2, pp. 574-3, 1984
[39] T.Yamanka, et al.,IEEE Electron Device Lett., Vol 17, pp.178-0, 1996
[40] W.K. Chim et al., J. Appl. Phys., Vol93, pp.4788-3, 2003
[41] Erich Kasper et al.,“New virtual substrate concept for vertical MOS transistors”, Thin Solid Films, Vol. 336, p. 319-322, 1998
[42] Chia Ching Yeo, et al.,“Electron Mobility Enhancement Using Ultrathin Pure Ge on Si Substrate”, IEEE Electron Device Letters, Vol. 26, No. 10, p. 761-763, 2005
[43] Goutam Kumar Dalapati, et al., “ Impact of Strained-Si Thickness and Ge Out-Diffusion on Gate Oxide Qualityfor Strained-Si Surface Channel n-MOSFETs” , IEEE Trans. Electron Devices, Vol. 53, No. 5, 2006
[44] Pei-Jer Tzeng, et al.,“Physical and Reliability Characteristics of Hf-based Gate Dielectrics on Strained-Si1-xGex MOS Devices” IEEE Trans. Device and Materials Reliability, Vol. 5, No. 2, p. 168-176, 2005
[45] C. W. Liu, et al.,“SiGe/Si Heterostructures”, Encyclopedia of Nanoscience and Nanotechnology, Vol. 9, p. 775-792, 2004
[46] Ook Sang Yoo, Jungwoo Oh, Kyung Seok Min, Chang Yong Kangc, B.H. Lee, Kying Taek Lee, Min Ki Na, Hyuk-Min Kwon, P.Majhi, H-H Tseng, Raj Jammy, J.S. Wang, Hi-Deok Lee, et al., “Effect of Si capping layer on the interface quality and NBTI of high mobility channel Ge-on-Si pMOSFETs”, Microelectronic Engineering,2008
[47] Qing-Qing Sun, et al.,“Impact of germanium related defects on electrical performance of hafnium oxide”, Appl. Phys. Lett., Vol. 92 , p. 102908 , 2008
[48] Ook Sang Yoo, et al.,“Effect of Si Capping Layer on the Interface Quality and NBTI of High Mobility Channel Ge-on-Si p-MOSFETs”, Microelectronic Engineering, 2008
[49] Young-Joo Song, et al.,“Effects of Si-cap Layer Thinning and Ge Segregation on the Characteristics of Si/SiGe/Si Heterostructure p-MOSFETs”, Solid-State Electronics, Vol.46, p. 1983-1989, 2002
[50] Qingchun Zhang, et al., “Germanium Incorporation in HfO2 Dielectric on Germanium Substrate”, Journal of The Electrochemical Society, Vol. 153, p. G207-G210, 2006
[51] Chia Ching Yeo, Byung Jin Cho, Senior Member, IEEE, F. Gao, S. J. Lee, Member, IEEE, M. H. Lee, C.-Y. Yu, C. W. Liu, L. J. Tang, and T. W. Lee et al., “Electron mobility enhancement using ultrathin pure Ge on Si substrate”, IEEE electron device letters, Vol. 26, NO. 10, October 2005
[52] C. D. Young, et al., “Electron Trap Generation in High-k Gate Stacks by Constant Voltage Stress”, IEEE Device and Materail Reliability, Vol. 6, p. 123-131, June ,2006
[53] S. Mahapatra, et al., “On the Generation and Recovery of Interface Traps in MOSFETs Subjected to NBTI, FN, and HCI Stress”, IEEE Electric Device, Vol. 53, p.1583-1592, July 2006
[54] Ammer Nayfeh, Chi On Chui, TaKao Yonehara, and Krishna C. Saraswat,“Fabrication of High-Quality p-MOSFET in Ge Grown Heteroepitaxially on Si”, IEEE Electric Device, Vol. 26, No. 5, May 2006
[55] C.D. Young, et al., “Detection of Trap Generation in High-K Gate Stacks”, 2005 IIRW Final Report
[56] Satoshi Kamiyama, et al.,“Improvement in the uniformity and the thermal stability of Hf-silicate gate dielectric by plasma-nitridation”, IWGI, Tokyo, p. 46, 2003
[57] Chin-Lung Cheng, et al.,“Current-conduction and charge trapping properties due to bulk nitrogen in HfOxNy gate dielectric of metal-oxide-semiconductor devices”, Appl. Phys. Lett., Vol. 86, p. 212902, 2005
[58] S. J. Wang, et al., “Effect of Nitrogen Incorporation on the Electronic Structure and Thermal Stability of HfO2 Gate Dielectric ”, Appl. Phys. Lett., Vol. 88, p.192103, 2006
[59] M. S. Akbar, et al., “Effect of NH3 Surface Nitridation Temperature on Mobility of Ultrathin Atomic Layer Deposited HfO2”, Appl. Phys. Lett., Vol. 86, p. 032906 ,2005
[60] Renee Nieh, et al., “Evaluation of Silicon Surface Nitridation Effects on Ultra-thin ZrO2 Gate Dielectrics”, Appl. Phys. Lett., Vol. 81, p.1663, 2002
[61] Katsuhiro Kutsuki, Gaku Okamoto, Takuji Hosoi, Takayoshi Shimura, and Heiji Watanabe, et al., “Germanium Oxynitride gate dielectrics formed by plasma nitridation of ultra thermal oxides on Ge(100) ”, Appl. Phys. Lett., Vol. 95, p.022102, 2009
[62] N. Lu, W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antonaidis, and D. L. Kwong, et al., “Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric”, Appl. Phys. Lett., Vol. 87, p051922, 2005
[63] 杜立偉,“應用電漿佈植氮化及矽覆蓋層以提升具有矽化鍺或鍺通道之金氧半元件電特性研究”,國立清華大學工程與系統科學系,2009
[64] Kazuyoshi Torii, et al., IEEE EDL, Vol. 53, p. 323, 2006
[65] G. Shang,et al., “Stability and Band Offsets of Nitrogenated High-Dielectric-Constant Gate Oxides”, Appl. Phys. Lett., Vol. 84, No. 1, p.106-108, 2004