研究生: |
曾靨雯 Ye-Wun Zeng |
---|---|
論文名稱: |
利用低阻值基板作為欄柵太陽能電池有較佳表現並用硝酸進行表面鈍化 High performance grating solar cell with low resistivity wafer and passivation using HNO3 |
指導教授: |
黃惠良
Huey-Liang Hwang 裴靜偉 Zing-way Pei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 欄柵太陽能電池 、鈍化 |
外文關鍵詞: | grating solar cell, passivation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文,利用電化學蝕刻形成多孔矽結構作為欄柵太陽能電池的應用,除了延續之前學長對太陽能電池特性改良的研究,並且進一步將原本的二甲基甲醯胺 (Dimethylformamide, DMF) 蝕刻溶液改為對環境傷害較小的二甲基亞碸(Dimethl Sulfoxide, DMSO)。
同時也利用電子顯微鏡觀察:不同阻抗的基板、電化學蝕刻所施加不同的電流以及蝕刻的時間對蝕刻形貌的影響與關係,再進一步利用Solar simulator測得不同蝕刻濃度、電流和蝕刻時間找得濃度為3M HF/DMSO、施加電流密度3 mA/cm2、以及蝕刻時間介於40到60分鐘之間有較佳表現,此條件效率可以達到8.587 %、短路電流密度40.435 mA/cm2、開路電壓0.534伏特。
接下來,我們將此條件的樣品大量複製,並利用硝酸浸泡十天作為鈍化,再用Solar simulator對成品的效能做觀察,雖然硝酸濃度與蝕刻時間沒有明顯的正比關係,但利用硝酸鈍化而形成的氧化層可以明顯改善太陽能電池的表現得到15.503 % 的轉換效率以及短路電流53.445 mA/cm2、開路電壓0.579伏特較佳的表現。
In this research work, we investigated high efficiency grating solar cells by electrochemical etching with different etching parameters, etching solution and acid treatment. Since Dimethylformamide (DMF) solution which was used as the electrolyte for our earlier work has several serious health hazards, we replaced this electrolyte by Dimethl Sulfoxide (DMSO).
Also we observed that the morphology of the pores formed on the silicon wafer depends on the etching time, current density, concentration of electrolyte and the resistivity of the wafer used.
Grating solar cell which showed better performance in this study was fabricated with porous silicon structure obtained with an electrolyte of concentration 3M HF/DMSO, current density 3 mA/cm2 and an etching time ranging from 40 minutes to 60 minutes. The efficiency obtained with this condition was 8.587 % with a short circuit current density (Jsc) of 40.435 mA/cm2, and the open circuit voltage (Voc) of 0.534 V.
For the further improvements of the performance of grating solar cell, we treated the porous silicon wafer with nitride acid (HNO3) for 10 days before p-n junction formation to get a thin passivation layer of SiO2. We found that the grating solar cells fabricated with acid treated samples showed higher efficiency of 15.503 % with very high short circuit current density (Jsc) of 53.445 mA/cm2 and open circuit voltage (Voc) of 0.579 V.
[1] Solar Energy: The Way of the Future?
http://www.nd.edu/~techrev/Archive/Fall2001/a2.html (2001)
[2] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, Chapter1, p.1-2, National Tsing Hua University Master Thesis (2007)
[3] http://www.nrel.gov/ncpv/
[4] 莊嘉琛 編譯,太陽能工程-太陽電池篇 Chapter2, p.9-11 , 全華科技圖書股份有限公司 (1997)
[5] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, Chapter2, p.17-18, National Tsing Hua University Master Thesis (2007)
[6] Sze S. M. Physics of semiconductor Devices, 2nd Edition, p.802 (1981)
[7] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, Chapter2, p.11-20, National Tsing Hua University Master Thesis (2007)
[8] Mitsuo Fukuda, “Optical Semiconductor Devices,” John Wiley & Sons, Inc.
[1] P.Y.Y. Kan, S.E. Foss, T.G. Finstad, Materials Science and Engineering B 137 (2007) 63-68
[2] Jeong KIM, In Sik MOON, Moon Jae LEE and Dae Won KIM, Journal of the Ceramic Society of Japan 115 [5] 333-337 (2007)
[3] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 5, p.150, Prentice Hall (2001)
[4] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, Chapter6, p296, Prentice Hall (2000)
[5] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 10, p.480-487, Prentice Hall (2001)
[6] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 11, p.170-173, Prentice Hall (2001)
[7] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 5, p.367-375, Prentice Hall (2001)
[1] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, Chapter3, p.113, Prentice Hall (2000)
[2] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, Chapter3, p.120, Prentice Hall (2000)
[3] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, Chapter4, p.174-175, Prentice Hall (2000)
[4] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, Chapter7, p.397-398, Prentice Hall (2000)
[5] Sciencetech http://0rz.tw/6a48z
Serving The Optical Spectroscopy Community For Over 23 Years (1985~2008)
[6] 半導體製程技術http://ocw.nctu.edu.tw/upload/physics/physics_lecturenotes/Chap.%2027%20Notes.pdf
[7] R. L. Smith and S.D. Collins, J. Appl. Phys. 71 (8), 15 April (1992)
[8] L. N. Aleksandrov and P.L. Novikov, Thin Solid Films 330, 102 (1998)
[9] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, J. Cryst. Growth 73, 622 (1985)
[10] Farid A. Harraz, Kentaro Kamada, Katsutoshi Kobayashi, Tetsuo Sakka, and Yukio H. Ogataa, Journal of The Electrochemical Society, 152 (4) C213-220 (2005)
[11] X.Q. Bao, J.W. Jiao, J. Zhou, and Y.L. Wang, Electrochimica Acta 52 (2007) 6728-6733
[12] P.Y.Y. Kan, S.E. Foss, and T. G. Finstad, Materials Science and Engineering B 137 (2007) 63-68
[13] E.A. Ponomarev and C.Lėvy-Clėment, Journal of Porous Materials 7, 51-56 (2000)