簡易檢索 / 詳目顯示

研究生: 陳雯琳
Chen, Wen Lin
論文名稱: 利用網路資料探勘技術與知覺地圖協助產品定位與設計:以ASUS智慧型手機為案例
Using Web Mining and Perceptual Mapping to Support Customer-oriented Product Positions and Designs: The Case of ASUS Mobile Phone
指導教授: 張瑞芬
Amy Trappey
口試委員: 蔡介元
王建智
張艾喆
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 網路爬蟲網路資料探勘分群分析關聯規則探勘知覺地圖市場定位產品差異比較
外文關鍵詞: Web Crawling, Web Mining, Clustering Analysis, Association Rule Mining, Perceptual Map, Market Positioning, Products Comparison
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網際網路與電子商務的蓬勃發展促進了線上購物的交易行為,而電子商務擁有不受時間與地理因素影響的特質,讓市場範疇能夠迅速地觸及全球的消費者,對於消費者而言,透過虛擬通路來進行購物提供了更多的選擇性與便利性,並且也為企業帶來可觀的商機。越來越多人們選擇利用網路來購買商品,而為了使企業了解顧客對商品的使用體驗,多數電子商務網站皆會提供商品評價的平台服務,讓顧客分享對於商品的意見。線上顧客評論除了能夠成為企業重新設計產品的方針,也能提供潛在顧客衡量商品品質的依據,而線上顧客評論已被廣泛視為顧客購買決策中的重要元素,本研究運用線上顧客評論作為分析的資料,並透過網路爬蟲、文字探勘、分群分析、關聯規則探勘等網路資料探勘技術與知覺地圖技術,發展一個協助多項產品間差異比較的方法,藉此讓企業在眾多資料中了解顧客的心聲與競爭者商品的差異,並提供企業產品再設計與新產品定價的方向。


    With the rapid development of e-commerce applications, online shopping has become more popular and convenient than in-store shopping. E-commerce provides a fast and global platform in which transactions, pre- and post-sales communications take place efficiently and rapidly. Online shopping offers a range of product options with no geographical limitations to customers. Many people choose to use the Internet to search and purchase products and, thus, Internet provides enormous opportunities to consumer goods marketers and manufacturers. In recent years, many e-commerce websites provide consumer feedback functions and social networks, allowing customers to share their purchasing and usage experiences online. Companies collect and analyze information from customers’ reviews through the platform to understand the impressions of customers for products they purchased. Online customer reviews has been widely regarded as an important source of information influencing customers buying decisions. In addition, online customer reviews help companies to redesign their products with key features that better positions to target customers in promising market sectors. This research uses online customer reviews as the business intelligence (BI) corpus. After determining the source webpage of customer reviews, a web crawler needs to collect customer review text. Afterwards, computer-assisted text mining, clustering analysis, association rule mining, and perceptual mapping are applied to develop a formal methodology to compare similar products in a given domain. In this research, the consumer electronic sector is studied. Mobile phone customer reviews are web crawled, collected, mined, and analyzed. The study assists mobile phone manufacturers to understand the voice of customers in both positive and negative perspectives of post-purchasing experiences. The customer-preferred product functions, hardware/software/app features, and price positions, as key business intelligence, are derived for new product designs and market launches.

    中文摘要 I 英文摘要 II 致謝 III 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程與架構 3 第二章 文獻探討 5 2.1 網路資料探勘 5 2.1.1 網頁內容探勘 6 2.1.2 網頁使用行為探勘 6 2.1.3 網頁結構探勘 7 2.2 網路爬蟲 7 2.3 文字探勘 8 2.4 分群分析 9 2.5 關聯規則分析 11 2.6 產品定位分析 11 第三章 研究方法 14 3.1 資料蒐集 16 3.2 資料前置處理 16 3.3 文字探勘 17 3.4 分群分析 18 3.5 關聯規則分析 19 3.6 產品定位分析 21 第四章 案例研究分析 25 4.1 資料蒐集 25 4.2 資料前置處理 27 4.3 文字探勘 28 4.4 分群分析 29 4.5 分群結果 30 4.6 關聯規則分析 46 4.7 產品定位分析 49 4.8 分析結果 75 第五章 結論與建議 84 參考文獻 87 附錄一、ASUS ZenFone 2規格 98 附錄二、ASUS ZenFone 2分群之關鍵字詞 99 附錄三、ASUS ZenFone 2分群結果 103 附錄四、案例產品與競爭產品之手機規格差異 106

    英文文獻
    1. Aaker, D. A., & Shansby, J. G. (1982). Positioning your product. Business horizons, 25(3), 56-62.
    2. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).
    3. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM SIGMOD Record, 22(2), 207-216.
    4. Ahmed, Z. U. (1991). The influence of the components of a state's tourist image on product positioning strategy. Tourism Management, 12(4), 331-340.
    5. Ahuja, M. S., Bal, J. S., & Varnica. (2014). Web Crawler: Extracting the Web Data. International Journal of Computer Trends and Technology, 13(3), 132-137.
    6. Ascione, P., Cinque, M., & Cotroneo, D. (2006). Automated logging of mobile phones failures data. In Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC'06) (pp. 8-pp). IEEE.
    7. Berkhin, P. (2002). Survey of clustering data mining techniques. Technical Report, Accrue Software.
    8. Bernardo, A. B., Ouano, J. A., & Salanga, M. G. C. (2009). What is an academic emotion? Insights from Filipino bilingual students’ emotion words associated with learning. Psychological Studies, 54(1), 28-37.
    9. Berry, M. W. (2004). Survey of text mining. Computing Reviews, 45(9), 548.
    10. Bisdikian, C. (2001). An overview of the Bluetooth wireless technology. IEEE Commun Mag, 39(12), 86-94.
    11. Bross, J. (2013). A Distant Supervision Method for Product Aspect Extraction from Customer Reviews. In Semantic Computing (ICSC), 2013 IEEE Seventh International Conference on (pp. 339-346). IEEE.
    12. Chapman, C., & Feit, E. M. (2015). Association Rules for Market Basket Analysis. In R for Marketing Research and Analytics (pp. 339-361). Springer International Publishing.
    13. Chuang, Y., & Chen, L. L. (2008). How to rate 100 visual stimuli efficiently. International Journal of Design, 2(1), 31-43.
    14. Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the world wide web. In Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE International Conference on (pp. 558-567). IEEE.
    15. Dedrick, J., Kraemer, K. L., & Linden, G. (2011). The distribution of value in the mobile phone supply chain. Telecommunications Policy, 35(6), 505-521.
    16. Deng, S., Aydin, R., Kwong, C. K., & Huang, Y. (2014). Integrated product line design and supplier selection: a multi-objective optimization paradigm. Computers & Industrial Engineering, 70, 150-158.
    17. Denizci Guillet, B., & Kucukusta, D. (2016). Spa market segmentation according to customer preference. International Journal of Contemporary Hospitality Management, 28(2).
    18. Doh, S. J., & Hwang, J. S. (2009). How consumers evaluate eWOM (electronic word-of-mouth) messages. CyberPsychology & Behavior, 12(2), 193-197.
    19. Du, F., Lu, Y. Q., & Wu, S. T. (2004). Electrically tunable liquid-crystal photonic crystal fiber. Applied physics letters, 85(12), 2181-2183.
    20. Etzioni, O. (1996). The World-Wide Web: quagmire or gold mine? Communications of the ACM, 39(11), 65-68.
    21. Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining. Communications of the ACM, 49(9), 76-82.
    22. Feng, L., Qiu, M. H., Wang, Y. X., Xiang, Q. L., Yang, Y. F., & Liu, K. (2010). A fast divisive clustering algorithm using an improved discrete particle swarm optimizer. Pattern Recognition Letters, 31(11), 1216-1225.
    23. Gan, Q., & Yu, Y. (2015). Restaurant Rating: Industrial Standard and Word-of-Mouth--A Text Mining and Multi-dimensional Sentiment Analysis. In System Sciences (HICSS), 2015 48th Hawaii International Conference on (pp. 1332-1340). IEEE.
    24. Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Waltham: Elsevier.
    25. Harbers, G., Bierhuizen, S. J., & Krames, M. R. (2007). Performance of high power light emitting diodes in display illumination applications. Journal of Display Technology, 3(2), 98-109.
    26. He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472.
    27. Hearst, M. A. (1999). Untangling text data mining. In Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics (pp. 3-10). Association for Computational Linguistics.
    28. Hosseinpour, F., Amoli, P. V., Farahnakian, F., Plosila, J., & Hämäläinen, T. (2014). Artificial Immune System Based Intrusion Detection: Innate Immunity Using an Unsupervised Learning Approach. International Journal of Digital Content Technology and its Applications, 8(5), 1-12.
    29. Hsu, F. C., Trappey, A. J., Trappey, C. V., Hou, J. L., & Liu, S. J. (2006). Technology and knowledge document cluster analysis for enterprise R&D strategic planning. International Journal of Technology Management, 36(4), 336-353.
    30. Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214.
    31. Isa, N. A. M., Salamah, S., & Ngah, U. K. (2009). Adaptive fuzzy moving K-means clustering algorithm for image segmentation. Consumer Electronics, IEEE Transactions on, 55(4), 2145-2153.
    32. Jang, S., Yoon, Y., Lee, I., & Kim, J. (2009). Design-oriented new product development. Research-Technology Management, 52(2), 36-46.
    33. Johnson-Laird, P. N., & Oatley, K. (1989). The language of emotions: An analysis of a semantic field. Cognition and emotion, 3(2), 81-123.
    34. Jokitulppo, J., Ikäheimo, M., & Pääkkönen, R. (2008). Noise Exposure Measurements in Real Ears: An Evaluation of MIRE-Technique Use in the Field and in the Laboratory. Acta Acustica united with Acustica, 94(5), 734-739.
    35. Karadeniz, M. (2009). Product positioning strategy in marketing management. Journal of Naval Science and Engineering, 5(2), 98-110.
    36. Kaul, A., & Rao, V. R. (1995). Research for product positioning and design decisions: An integrative review. International Journal of research in Marketing, 12(4), 293-320.
    37. Keeney, R. L. (1999). The value of Internet commerce to the customer. Management science, 45(4), 533-542.
    38. Keiningham, T. L., Cooil, B., Aksoy, L., Andreassen, T. W., & Weiner, J. (2007). The value of different customer satisfaction and loyalty metrics in predicting customer retention, recommendation, and share-of-wallet. Managing Service Quality: An International Journal, 17(4), 361-384.
    39. Kim, D. W., Kang, T. G., Li, G., & Park, S. T. (2015). Analysis of User’s Behaviors and Growth Factors of Shopping Mall using Bigdata. Indian Journal of Science and Technology, 8(25).
    40. Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15.
    41. Li, H., Ye, Q., & Law, R. (2013). Determinants of customer satisfaction in the hotel industry: an application of online review analysis. Asia Pacific Journal of Tourism Research, 18(7), 784-802.
    42. Ling, R. (2004). Just connect The social world of the mobile phone. Psychology Review, 11, 10-13.
    43. Liu, Q. B., Karahanna, E., & Watson, R. T. (2011). Unveiling user-generated content: Designing websites to best present customer reviews. Business Horizons, 54(3), 231-240.
    44. MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California.
    45. Maggard, J. P. (1976). Positioning revisited. The Journal of Marketing, 40(1), 63-66.
    46. McDaniel, P. (2012). Bloatware comes to the smartphone. IEEE Security & Privacy, 4(10), 85-87.
    47. Moe, W. W., & Trusov, M. (2011). The value of social dynamics in online product ratings forums. Journal of Marketing Research, 48(3), 444-456.
    48. Mooi, E., & Sarstedt, M. (2011). Cluster analysis (pp. 237-284). Springer Berlin Heidelberg.
    49. Morris, M. A., Clarke, G. P., Edwards, K. L., Hulme, C., & Cade, J. E. (2016). Geography of diet in the UK women’s cohort study: a cross-sectional analysis. Epidemiology-Open Journal, 1(1), 20-32.
    50. Olston, C., & Najork, M. (2010). Web Crawling. Foundations and Trends in Information Retrieval, 4(3), 175-246.
    51. O'reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications & strategies, (1), 17.
    52. Park, S. O., Hong, C. K., Shin, D. H., Lee, J. H., & Hwang, S. Y. (2013). Efficacy of metronome sound guidance via a phone speaker during dispatcher-assisted compression-only cardiopulmonary resuscitation by an untrained layperson: a randomised controlled simulation study using a manikin. Emergency Medicine Journal, 30, 657-661.
    53. Perrucci, G. P., Fitzek, F. H., & Widmer, J. (2011). Survey on energy consumption entities on the smartphone platform. In Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd (pp. 1-6). IEEE.
    54. Pyo, S. (2015). Integrating tourist market segmentation, targeting, and positioning using association rules. Information Technology & Tourism, 15(3), 253-281.
    55. Qureshi, M. A., Younus, A., & Rojas, F. (2010). Analyzing the web crawler as a feed forward engine for an efficient solution to the search problem in the minimum amount of time through a distributed framework. In Information Science and Applications (ICISA), 2010 International Conference on (pp. 1-8). IEEE.
    56. Rao, V., Singhal, G., Kumar, A., & Navet, N. (2005, January). Battery model for embedded systems. In 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (pp. 105-110). IEEE.
    57. Ries, A., & Trout, J. (1972). The positioning era cometh. Advertising Age, 24, 35-38.
    58. Rowell, C., & Lam, E. Y. (2012). Mobile-phone antenna design. IEEE Antennas and Propagation Magazine, 54(4), 14-34.
    59. Salton G., Wong A., and Yang C.S. (1975). A vector space model for automatic indexing, Communications of the ACM, 18(11), 613-620.
    60. Saxena, N., Uddin, M. B., Voris, J., & Asokan, N. (2011). Vibrate-to-unlock: Mobile phone assisted user authentication to multiple personal RFID tags. In Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference (pp. 181-188). IEEE.
    61. Sharma, N. R., & Chitre, V. D. (2014). Mining, Identifying and Summarizing Features from Web Opinion Sources in Customer Reviews. International Journal of Innovations & Advancement in Computer Science, 3(7), 8-14.
    62. Sheikh, R. H., Raghuwanshi, M. M., & Jaiswal, A. N. (2008). Genetic algorithm based clustering: a survey. In Emerging Trends in Engineering and Technology, 2008. ICETET'08. First International Conference on (pp. 314-319). IEEE.
    63. Shen, D., Ruvini, J. D., Somaiya, M., & Sundaresan, N. (2011, October). Item categorization in the e-commerce domain. In Proceedings of the 20th ACM international conference on Information and knowledge management (pp. 1921-1924). ACM.
    64. Shi, M., Chiang, J., & Rhee, B. D. (2006). Price competition with reduced consumer switching costs: The case of “wireless number portability” in the cellular phone industry. Management Science, 52(1), 27-38.
    65. Simoudis, E. (1996). Reality check for data mining. IEEE Expert: Intelligent Systems and Their Applications, 11(5), 26-33.
    66. Smith, B. (2008). ARM and Intel battle over the mobile chip's future. Computer, 41(5), 15-18.
    67. Somprasertsri, G., & Lalitrojwong, P. (2010). Mining Feature-Opinion in Online Customer Reviews for Opinion Summarization. Journal of Universal Computer Science, 16(6), 938-955.
    68. Srivastava, J., Cooley, R., Deshpande, M., & Tan, P. N. (2000). Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2), 12-23.
    69. Tan, A. H. (1999). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases (vol. 8, pp. 65).
    70. Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior & Organization, 1(1), 39-60.
    71. Trappey, A. J., Trappey, C. V., Chung, C. L., & Chang, M. W. (2016). The Analysis of Additive Manufacturing IP Evolution for Biomedical Applications. In 18th International Conference on Innovation and Data Management (ICIDM 2016).
    72. Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
    73. Uriarte, R. B., Tsaftaris, S., & Tiezzi, F. (2015). Service Clustering for Autonomic Clouds Using Random Forest. In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on (pp. 515-524). IEEE.
    74. Wang, C. H. (2015). A market-oriented approach to accomplish product positioning and product recommendation for smart phones and wearable devices. International Journal of Production Research, 53(8), 2542-2553.
    75. Willassen, S. (2005). Forensic analysis of mobile phone internal memory. In IFIP International Conference on Digital Forensics (pp. 191-204). Springer US.
    76. Wu, J. Z., Liu, H. W., & Wu, F. L. (2016, March). A recommender system based on car pairwise comparisons on a mobile application using association rules. In 2016 IEEE International Conference on Industrial Technology (ICIT) (pp. 1344-1346). IEEE.
    77. Xiang, Z., Schwartz, Z., Gerdes, J. H., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction?. International Journal of Hospitality Management, 44, 120-130.
    78. Ye, Z., & Huang, J. X. (2014). A simple term frequency transformation model for effective pseudo relevance feedback. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 323-332). ACM.
    79. Ziefle, M. (2002). The influence of user expertise and phone complexity on performance, ease of use and learnability of different mobile phones. Behaviour & Information Technology, 21(5), 303-311.

    中文文獻
    80. 李隆洲(2015)。以智財演進為基進行3D列印應用於生醫領域之發展趨勢分析(指導教授:張瑞芬),清華大學工業工程與工程管理學系學位論文。
    81. 林惠玲與陳正倉(2011),應用統計學(第四版修訂版)。台北市:雙葉書廊。
    82. 林隆儀(譯)(2014)。行銷學:定義、解釋、應用(原作者:Levens, M.) 。台北市:雙葉書廊。(原著出版年:2011)
    83. 徐世輝(2013)。應用統計學。新北市:前程文化。
    84. 陳垂呈(2008)。利用關聯規則發掘讀者適性化之書籍推薦。圖書資訊學刊,65,55-74。
    85. 黄文與王正林(2015)。利用R語言打通大數據的經脈。台北市:佳魁資訊。
    86. 曾光華(2014)。行銷管理:理論解析與實務應用6/e。台北市:前程文化。
    87. 曾憲雄、蔡秀滿、蘇東興、曾秋蓉與王慶堯(2012)。資料探勘。台北市:旗標出版。
    88. 黃盈碩(2007)。非耗盡分群方法為基之可重疊專利分群方法論研究(指導教授:張瑞芬),國立清華大學工業工程與工程管理研究所碩士論文。
    89. 葉進儀、林彣珊與郭文熙(2008)。應用以約定值為基礎之演算法於關聯規則探勘。資訊管理學報,15(4),123-149。
    90. 簡禎富與許嘉裕(2014)。資料挖礦與大數據分析。台北市:前程文化。
    91. 欒斌、陳苡任與羅凱揚(2011)。電子商務(第七版)。台北市:滄海書局。

    網路文獻
    92. Aker, J. C. (2008). “Can You Hear Me Now?” How Cell Phones are Transforming Markets in Sub-Saharan Africa. Center for Global Development, Available at : http://mercury.ethz.ch/serviceengine/Files/ISN/94066/ipublicationdocument_singledocument/20a79c6f-0dcd-405a-b23d-f8c4f9ecaa85/en/Aker_Cell_Phone_Niger.pdf [June 18, 2016]
    93. Atmosphere Research Group & TripAdvisor. (2015). Using Guest Reviews to Pave the Path to Greater Engagement, Available at : https://d2bxpc4ajzxry0.cloudfront.net/TripAdvisorInsights/sites/default/files/downloads/2656/harteveldtstudy_2015.pdf [December 10, 2015]
    94. eMarketer. (2014a). Worldwide Ecommerce Sales to Increase Nearly 20% in 2014, Available at : http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-Increase-Nearly-20-2014/1011039 [April 14, 2015]
    95. eMarketer. (2014b). Global B2C Ecommerce Sales to Hit $1.5 Trillion This Year Driven by Growth in Emerging Markets, Available at : http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-Increase-Nearly-20-2014/1011039 [April 22, 2015]
    96. eMarketer. (2014c). Retail Sales Worldwide Will Top $22 Trillion This Year, Available at : http://www.emarketer.com/Article/Retail-Sales-Worldwide-Will-Top-22-Trillion-This-Year/1011765 [April 22, 2015]
    97. ePrice比價王,取自:http://www.eprice.com.tw/ [December 23, 2015]
    98. Internet World Stats. (2015). World Internet Users and 2015 Population Stats, Available at : http://www.internetworldstats.com/stats.htm [December 23, 2015]
    99. Statista. (2014). Statistics and facts on internet usage worldwide, Available at : http://www.statista.com/topics/1145/internet-usage-worldwide/ [December 10, 2015]
    100. WebHarvy Web Scraper. (2015). Available at : https://www.webharvy.com/ [December 20, 2015]
    101. 經濟部商業司,2015,「網路智慧新臺灣政策白皮書-網路經濟分組」會議資料與線上資料,網址:http://vbook.join.gov.tw/content/econo/ec.html [April 22, 2015]
    102. 數位時代,2015,「行動裝置瘋快充,今年滲透率上看20%」,網址:http://www.bnext.com.tw/article/view/id/36365 [December 25, 2015]
    103. 數碼資訊,2013,「電池裡mAh和Wh的區別」,網址:http://digital.sina.com.hk/news/34/20130129/25467/ [December 25, 2015]

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE