研究生: |
蔡彥俊 Tsai, Yen-Chun |
---|---|
論文名稱: |
胃幽門螺旋桿菌細胞結合因子晶體結構之研究 Crystal Structure of Cell Binding Factor from Helicobacter pylori |
指導教授: | 孫玉珠 |
口試委員: |
張大慈
蕭傳鐙 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 細胞結合因子 |
外文關鍵詞: | cell binding factor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
細胞結合因子(HpCBF2)為胃幽門螺旋桿菌的一個毒素因子,能夠透過第四型類鐸受體(Toll-like receptor 4)轉活化胃上皮細胞中的上皮生長因子受體進而造成異常的細胞增生。此外,HpCBF2也參與蛋白質的折疊,影響蛋白質折疊的速率,在細胞外膜蛋白熟成機制佔有重要的地位。HpCBF2已成功大量表現及純化,其分子量為31,910 Da,在水溶液中以二聚體的聚合型式。HpCBF2以二聚體進行其生物功能,利用胜肽受質 (Suc-AAPF-pNA) 進行的活性測試 (activity assay),測得HpCBF2對脯胺酸順反異構化的催化效率 (kcat/Km) 為238 ± 7.2 mM-1s-1。我們利用Jeffamine M-600 為沉澱劑培養得到HpCBF2晶體。其晶體的空間群 (space group) 為P3121,晶格參數為a = 61.7 Å, b = 61.7 Å, c = 367.0 Å,每個不對稱單元中含有兩個HpCBF2分子,其中水溶液含量為61%,Vm值為3.16 Å3Da−1。我們利用單波長異常散射方法(single wavelength anomalous dispersion method)計算其相位角,決定HpCBF2 立體結構,解析度為2.6 Å。每個HpCBF2單體具有肽基脯胺酸順反異構酶 (PPIase)及伴隨蛋白(chaperone)兩個功能區。PPIase功能區主要以三條α螺旋及三條β折疊組成,其的受質結合區主要以六個保留性殘基所構成,為His131, Asp169, Leu181, Met189, Phe193, Phe215 及 His217.。 Chaperone功能區以四條α螺旋所組成,而兩個單體會經由一 α螺旋互相纏繞而形成功能區調換(domain swapped)的現象。這些分子結構的資訊提供了胃幽門螺旋桿菌外膜細胞熟成機制的見解及對抗胃幽門螺旋桿菌藥物開發的發想。
The cell binding factor 2 of Helicobacter pylori (HpCBF2) is a virulence factor and transactivates epidermal growth factor receptor (EGFR) through TLR4 in gastric epithelial cells and lead to abnormal cell proliferation. HpCBF2 catalyzed cis-trans isomerization of proline peptide bond on oligopeptide. HpCBF2 also plays an important role in outer membrane protein maturation and may participate in protein folding at the rate-limiting step. HpCBF2 has been overexpressed and isolated with a molecular weight of 31,910 Da. HpCBF2 functions as a dimer. The isomerization activity of HpCBF2 was performed by a coupling enzyme assay using Suc-AAPF-pNA as a substrate analog. The catalytic efficiency (kcat/Km) of HpCBF2 was calculated as 238 ± 7.2 mM−1s−1. HpCBF2 was crystallized by means of Jeffamine M-600 as a precipitant. HpCBF2 crystal belongs to P3121 space group with cell parameters a = 61.7 Å, b = 61.7 Å, c = 367.0 Å, at 2.6 Å resolution. There are two molecules per asymmetric unit with Vm of 3.16 Å3Da−1 and solvent content of 61%. The crystal structure of HpCBF2 was determined by the single anomalous dispersion (SAD) method via the selenium derivative. The overall structure of HpCBF2 contains a PPIase domain and a chaperone domain. The PPIase domain is composed of three β strands and α helices and the substrate-binding pocket consists of six conserved residues, His131, Asp169, Leu181, Met189, Phe193, Phe215 and His217. The chaperone domain is composed of four α helices and two chaperone domains build up a domain-swapped architecture. These structural results provide a understanding of the biological function of HpCBF2 and suggest the possibility of the drug design on HpCBF2 as well as the potential alinic application in H.pylori.
1. Goodwin, C. S. & Armstrong, J. A. (1990). Microbiological aspects of Helicobacter pylori (Campylobacter pylori). European Journal of Clinical Microbiology & Infectious Diseases 9, 1-13.
2. Kusters, J. G., van Vliet, A. H. M. & Kuipers, E. J. (2006). Pathogenesis of Helicobacter pylori Infection. Clin. Microbiol. Rev. 19, 449-490.
3. Tomb, J.-F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547.
4. Hatakeyama, M. (2009). <i>Helicobacter pylori and gastric carcinogenesis. Journal of Gastroenterology 44, 239-248.
5. Lacy, B. E. & Rosemore, J. (2001). Helicobacter pylori: Ulcers and More: The Beginning of an Era. The Journal of Nutrition 131, 2789S-2793S.
6. Hirayama T, W. A., Yahiro K, Kimura M, Kimura T. (2002). Helicobacter pylori vacuolating cytotoxin, VacA. Jpn J Infect Dis. 55, 5.
7. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476 - 478.
8. Siekierka, J. J., Hung, S. H. Y., Poe, M., Lin, C. S. & Sigal, N. H. (1989). A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341, 755-757.
9. Rahfeld, J.-U., Rücknagel, K. P., Schelbert, B., Ludwig, B., Hacker, J., Mann, K. & Fischer, G. (1994). Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases Amino acid sequence and recombinant production of parvulin. FEBS Letters 352, 180-184.
10. Jordens, J., Janssens, V., Longin, S., Stevens, I., Martens, E., Bultynck, G., Engelborghs, Y., Lescrinier, E., Waelkens, E., Goris, J. & Van Hoof, C. (2006). The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase. Journal of Biological Chemistry 281, 6349-6357.
11. Zhang, Y., Daum, S., Wildemann, D., Zhou, X. Z., Verdecia, M. A., Bowman, M. E., Lücke, C., Hunter, T., Lu, K.-P., Fischer, G. & Noel, J. P. (2007). Structural Basis for High-Affinity Peptide Inhibition of Human Pin1. ACS Chemical Biology 2, 320-328.
12. Ping Lu, K., Hanes, S. D. & Hunter, T. (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544-547.
13. Magnusdottir, A., Stenmark, P., Flodin, S., Nyman, T., Hammarström, M., Ehn, M., Bakali H, M. A., Berglund, H. & Nordlund, P. (2006). The Crystal Structure of a Human PP2A Phosphatase Activator Reveals a Novel Fold and Highly Conserved Cleft Implicated in Protein-Protein Interactions. Journal of Biological Chemistry 281, 22434-22438.
14. Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. (2007). Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3, 619-629.
15. Fischer, G. (2008). Peptidyl-prolyl cis/trans Isomerases. Protein Science Encyclopedia.
16. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F. X. (1989). Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476-478.
17. Fanghänel J, F. G. (2004 ). Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci. 9, 3453-78.
18. Fersht, A., Ed. (1999). Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis
and Protein Folding
New York: WH Freeman,.
19. Edlich F, F. G. (2006). Pharmacological targeting of catalyzed protein folding: the example of peptide
bond cis/trans isomerases. Handb Exp Pharmacol 172, 359-404.
20. Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V. & Lu, K. P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20, 3459-3472.
21. Lu, P.-J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784-788.
22. Muecke, M. & Schmid, F. X. (1994). Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry 33, 14608-14619.
23. Pathak, S. K., Basu, S., Bhattacharyya, A., Pathak, S., Banerjee, A., Basu, J. & Kundu, M. (2006). TLR4-Dependent NF-κB Activation and Mitogen- and Stress-Activated Protein Kinase 1-Triggered Phosphorylation Events Are Central to Helicobacter pylori Peptidyl Prolyl cis-, trans-Isomerase (HP0175)-Mediated Induction of IL-6 Release from Macrophages. The Journal of Immunology 177, 7950-7958.
24. Kühlewein, A., Voll, G., Hernandez Alvarez, B., Kessler, H., Fischer, G., Rahfeld, J.-U. & Gemmecker, G. (2004). Solution structure of Escherichia coli Par10: The prototypic member of the Parvulin family of peptidyl-prolyl cis/trans isomerases. Protein Science 13, 2378-2387.
25. Behrens, S., Maier, R., de Cock, H., Schmid, F. & Gross, C. (2001). The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20, 285 - 294.
26. Kale, A., Phansopa, C., Suwannachart, C., Craven, C. J., Rafferty, J. & Kelly, D. J. (2011). The virulence factor PEB4 and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. Journal of Biological Chemistry.
27. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F. X. (1997). Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J 16, 54-58.
28. Ureta, A. R., Endres, R. G., Wingreen, N. S. & Silhavy, T. J. (2007). Kinetic Analysis of the Assembly of the Outer Membrane Protein LamB in Escherichia coli Mutants Each Lacking a Secretion or Targeting Factor in a Different Cellular Compartment. Journal of Bacteriology 189, 446-454.
29. Bitto, E. & McKay, D. B. (2002). Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins. Structure 10, 1489-1498.
30. Burucoa, C., Frémaux, C., Pei, Z., Tummuru, M., Blaser, M. J., Cenatiempo, Y. & Fauchère, J. L. (1995). Nucleotide sequence and characterization of peb4A encoding an antigenic protein in Campylobacter jejuni. Research in Microbiology 146, 467-476.
31. Hennig, L., Christner, C., Kipping, M., Schelbert, B., Rücknagel, K. P., Grabley, S., Küllertz, G. & Fischer, G. (1998). Selective Inactivation of Parvulin-Like Peptidyl-Prolyl cis/trans Isomerases by Juglone†. Biochemistry 37, 5953-5960.
32. Potter, A. J., Ray, S., Gueritz, L., Nunns, C. L., Bryant, C. J., Scrace, S. F., Matassova, N., Baker, L., Dokurno, P., Robinson, D. A., Surgenor, A. E., Davis, B., Murray, J. B., Richardson, C. M. & Moore, J. D. (2010). Structure-guided design of α-amino acid-derived Pin1 inhibitors. Bioorganic & Medicinal Chemistry Letters 20, 586-590.
33. Basak, C., Pathak, S. K., Bhattacharyya, A., Pathak, S., Basu, J. & Kundu, M. (2005). The Secreted Peptidyl Prolyl cis,trans-Isomerase HP0175 of Helicobacter pylori Induces Apoptosis of Gastric Epithelial Cells in a TLR4- and Apoptosis Signal-Regulating Kinase 1-Dependent Manner. The Journal of Immunology 174, 5672-5680.
34. Basu, S., Pathak, S. K., Chatterjee, G., Pathak, S., Basu, J. & Kundu, M. (2008). Helicobacter pylori Protein HP0175 Transactivates Epidermal Growth Factor Receptor through TLR4 in Gastric Epithelial Cells. Journal of Biological Chemistry 283, 32369-32376.
35. Kofron, J. L., Kuzmic, P., Kishore, V., Colon-Bonilla, E. & Rich, D. H. (1991). Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 30, 6127-6134.
36. Kullertz, G., Luthe, S. & Fischer, G. (1998). Semiautomated microtiter plate assay for monitoring peptidylprolyl cis/trans isomerase activity in normal and pathological human sera. Clin Chem 44, 502-508.
37. Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H. & Hisabori, T. (2003). Chloroplast Cyclophilin Is a Target Protein of Thioredoxin. Journal of Biological Chemistry 278, 31848-31852.
38. Minor, Z. O. a. W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation
Mode. Methods in Enzymology 276, p.307-326.
39. Kantardjieff, K. A. & Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals. Protein Science 12, 1865-1871.
40. Evans, P. (2011). An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallographica Section D 67, 282-292.
41. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D 66, 213-221.
42. Cowtan, P. E. a. B. L. a. W. G. S. a. K. (2010). Features and Development of Coot. Acta Crystallographica Section D - Biological Crystallography 66, 486-501.
43. Mark, P. & Nilsson, L. (2001). Molecular Dynamics Simulations of the Ala-Pro Dipeptide in Water: Conformational Dynamics of Trans and Cis Isomers Using Different Water Models. The Journal of Physical Chemistry B 105, 8028-8035.
44. Xu, X., Wang, S., Hu, Y.-X. & McKay, D. B. (2007). The Periplasmic Bacterial Molecular Chaperone SurA Adapts its Structure to Bind Peptides in Different Conformations to Assert a Sequence Preference for Aromatic Residues. Journal of Molecular Biology 373, 367-381.
45. Giuseppe, P. O., Atzingen, M. V., Nascimento, A. L. T. O., Zanchin, N. I. T. & Guimarães, B. G. (2011). The crystal structure of the leptospiral hypothetical protein LIC12922 reveals homology with the periplasmic chaperone SurA. Journal of Structural Biology 173, 312-322.
46. Bradford, J. R. & Westhead, D. R. Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics 21, 1487-1494.
47. Rathbun, K., Hall, J. & Thompson, S. (2009). Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization. BMC Microbiology 9, 160.
48. Rouvière, P. E. & Gross, C. A. (1996). SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes & Development 10, 3170-3182.
49. Heikkinen, O., Seppala, R., Tossavainen, H., Heikkinen, S., Koskela, H., Permi, P. & Kilpelainen, I. (2009). Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA - Implications for the catalytic mechanism of parvulins. BMC Structural Biology 9, 17.