簡易檢索 / 詳目顯示

研究生: 周展延
Chou Chan-Yen
論文名稱: 使用原子-連體力學法於奈米尺度結構之力學性質研究
Investigation of Mechanical Properties of Nano-Scaled Structure Using Atomistic-Continuum Mechanics Method
指導教授: 江國寧
Kuo-Ning Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 120
中文關鍵詞: 原子-連體力學法奈米力學楊氏模數蒲松比鋰金屬有限單元法
外文關鍵詞: Atomisitc-Continuum Method, ACM, Nano mechanics, Young's modulus, Poisson's ratio, Finite element method, FEM, Lithium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米尺度結構由於其表面原子所佔比例較高,表面原子特性將影響奈米結構物理、化學特性,使其具有尺寸相關之特性。本研究提出一方法,利用有限單元法以及原子等效理論,建立一原子-連體力學分析法(Atomistic-Continuum Mechanics Method),以進行奈米尺度原子結構之力學模擬分析。透過原子-連體力學法,可大量簡化原子結構模型,得以在有限的計算資源中,進行更有效率,並保持相當精度的計算。為探討此法之可行性,本研究將建立以鋰原子結構為基礎的模型,分析材料在奈米尺度下(微觀)之楊氏模數及蒲松比等材料性質,並與塊材(巨觀)的材料性質做一比較及討論。
    於本研究中提出預力假設,說明鋰原子於不受外力之穩定狀態實存在預力:在鋰原子體心立方結構中,對角線方向相鄰原子間存在壓預力;而軸方向相鄰原子間則存在張預力。在此預力假設下,穩定狀態之奈米結構不再維持立方體的形狀,其表面原子會產生平面外之位移,形成近似球狀的結構。於奈米結構楊氏模數、蒲松比等材料力學性質研究中,奈米結構楊氏模數會高於該材料之塊材性質,而蒲松比則低於塊材性質。此外,該力學性質將隨著奈米結構尺寸大小變化,成為尺寸(Size-dependent)相關的材料性質。本研究中將進行缺陷對於完美晶格結構強度影響之初步探討,分析結果顯示,點缺陷會降低該結構的強度,使其楊氏模數下降。當點缺陷的數目增加,楊氏模數下降的幅度亦會增加。
    與分子動力學相比較,於相同原子個數及種類下,利用本研究之原子-連體力學分析法分析該奈米結構,其所需數值計算時間上比分子動力學方法少。於本研究中最大的奈米結構約含有60萬個原子,此模型於約需在一般個人電腦中計算八小時,若以相同大小模型進行分子動力學計算,則需以平行電腦才能負擔其龐大的計算量,故本研究發展之原子-連體力學法於奈米結構的研究中有其計算速度上之優勢。
    本研究主要目標在於原子-連體力學法之方法建立,於合理的假設下,將原本離散的原子結構轉換成為連續體結構,並利用有限單元法分析該結構之力學性質。於此方法中吾人可確認傳統連體力學理論用於奈米尺度分析之可行性,及該方法使用於原子個數超過百萬之大型奈米結構力學性質分析的能力。


    A novel atomistic-continuum mechanics method (ACM) based on the finite element method is proposed to simulate the mechanical characteristics, such as the Young’s modulus and Poisson’s ratio of nano-scaled structures. Moreover the nano-scaled body centered cubic (BCC) structures of Lithium (Li) are treated as the test vehicle in this research to validate the capability of the proposed method.
    The ACM method transfers an originally discrete atomic structure into an equilibrium continuum model by atomistic-continuum transfer elements. The ACM model simplifies the complexities of interaction forces among atoms, while the calculation accuracy is still acceptable and the computational time is affordable. To compare with molecular dynamics method (MD), the ACM method has benefits on computer calculation. In this research, it is capable to analyze a big model with more than 600,000 atoms, and only takes 8 hours CPU time in PC to get a result. In MD analysis, it will need a super computer to handle such a big model. As a result, the atomistic-continuum method shows potentials for the large model analysis.
    In this research, the nano-scaled BCC structures of Li are applied to analyze its Young’s modulus and Poisson’s ratio. The “pre-force” assumption is introduced. In the BCC structure, it is assumed that there are compressive pre-forces among the diagonal arranged atoms, and tensile pre-forces among the axial arranged atoms. The pre-force assumption will induce a bubble-like phenomenon when nano structures are in minimum energy. In the analysis results, the nano-scaled Li structure has higher Young’s modulus and lower Poisson’s ratio than bulk properties. Moreover, as the size of nano-scaled structure becomes larger, the Young’s modulus and Poisson’s ration become different. The material properties are no more constants in nano-scale structure. They are size-dependent properties. Besides, when point defects exist in nano-scaled structures, the Young’s modulus is decreased and the Poisson’s ration is increased, all compared with perfect nano structures.

    中文摘要 英文摘要 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 有限單元法(FEM)對於力學性質之模擬分析 1.2.2 分子動力學(MD)對於力學性質之模擬分析 1.3 研究目標 第二章 基礎理論 2.1 原子/分子間作用力關係 2.1.1 薛丁格方程式(Schrödinger equation)與漢米爾頓函數(Hamiltonian) 2.1.2 勢能函數(Potential energy function) 2.1.3 全域力場(Universal Force Field) 2.2 金屬原子結構與鍵結能量關係 2.2.1 金屬鍵 2.2.2 金屬晶格結構 2.2.3 金屬鍵結勢能函數 2.3 有限單元法基礎理論 2.3.1 穩態線性有限單元法原理 2.3.2 牛頓-拉弗森演算法(Newton-Raphson Method) 第三章 原子-連體力學法研究方法建構 3.1 奈米等級結構的尺寸效應(Size-effect) 3.2 原子等級多粒子系統(Many-particle system)模擬方法比較 3.3 基本假設 3.4 原子-連體轉置單元材料參數設定 3.5 材料缺陷對於力學性質影響 第四章 原子-連體力學法預力(Pre-force)假設分析 4.1 以最小能量法求解鋰原子穩定結構(解析解) 4.2 以原子-連體力學法求解鋰原子穩定結構(數值解) 4.3 原子作用力預力分析結果討論 第五章 原子-連體力學法於奈米等級原子結構力學性質分析 5.1 具預力之奈米結構力學性質暨尺寸效應分析 5.2 無預力之奈米結構力學性質暨尺寸效應分析 5.3 具缺陷之奈米結構力學性質探討 5.4 奈米等級原子結構力學性質分析結果討論 第六章 結論 第七章 參考文獻

    1. R. A. Serway, Clement J. Moses, C. A. Moyer, Modern Physics Second Edition, Thomson Learning, Inc., 1997.
    2. V. B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, and M. Ortiz, “Quasicontinuum models of interfacial structure and deformation”, Phys. Rev. Lett., vol. 80, pp. 742-745, 1998.
    3. M. S. Daw, and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Phys. Rev. B, vol. 29, pp. 6443-6453, 1984.
    4. Y. R. Jeng, and C. M. Tan, “Computer simulation of tension experiments of a thin film using an atomic model”, Phys. Rev. B, vol. 65, 174101, 2002.
    5. C. A. Yuan and K. N. Chiang, “Investigation of dsDNA structural transition meso-mechanics using Finite Element Method”, 3rd Cross-Strait Workshop on Nano Science and Technology” Conference, Hualien, Taiwan, 2004.
    6. C. Y. Li, and T. W. Chou, “Vibrational behaviors of multiwalled carbon nanotube based nanomechanical resonators”, Appl. Phys. Lett., vol. 84, pp. 121-123, 2004.
    7. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Ⅲ, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., vol. 114, pp. 10024-10035, 1992.
    8. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463, 1924
    9. L. G. Zhou, and H. C. Huang, “Are surfaces elastically softer or stiffer”, Appl. Phys. Lett., vol. 84, pp. 1940-1942, 2004.
    10. K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid, “Nanomechanics of single and multiwalled carbon nanotubes”, Phys. Rev. B, vol. 69, 115429, 2004.
    11. D. W Brenner, O. A Shenderova, J. A Harrison, S. J Stuart, B. Ni, and S. B Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.: Condens. Matter, vol. 14, pp. 783-802, 2002.
    12. D. Srivastava, M. Menon, and K. Cho, “Nanoplasticity of single-wall carbon nanotubes under uniaxial compression.” Phys. Rev. Lett., vol. 83, pp. 2973-2976, 1999.
    13. H. Fan, C. K. Y. Wong, M. M. F. Yuan, “Molecular Simulation of Cu-SAM adhesion force”, 5th Int. Conf. EuroSimE2004, pp. 575-579, 2004.
    14. A. Girshick, M. Bratkovsky, D. G. Pettifor, V. Vitek, Philosophical Magazine A, vol. 77, pp.6085-6100, 1989.
    15. 徐志強, “以分子動力學方法研究奈米微結構之缺陷”, 國立成功大學機械工程學系碩士論文, 2002.
    16. M. Rieth, Nano-engineering in science and technology – an introduction to the world of nano-design, World Scientific Publishing Co. Pte. Ltd., 2003.
    17. I. Pettersson, T. Liljefors, “Molecular mechanics calculates conformation energies of organic molecules: a comparision of force fields”, Reviews in Computational Chemistry, vol. 9, pp.167-189, 1996.
    18. A.D. Jr MacKerell, “All atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem, vol. 102, pp. 3586-3616, 1998.
    19. P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels”, Phys. Rev., vol. 34, 57, 1929.
    20. T. A. Halgren, “Maximally diagonal force constants in dependent angle-bending coordinates”, J. Am. Chem. Soc., vol. 112, 4710, 1990.
    21. R. G. Pearson, “A simple model for vibrational force constants”, J. Am. Chem. Soc., vol. 99, pp. 4869-4875, 1977.
    22. K. J. Bathe, Finite element procedures in engineering analysis, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1982.
    23. J. D. Faires, and R. Burden, Numerical methods 2nd edition, Thomson Learning, Inc., 1998.
    24. H. W. Kroto, J. R. Heath, S.C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene”, Nature, vol. 318, pp. 162-163, 1985.
    25. M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface”, Science, vol. 262, pp. 218-220, 1993.
    26. Y. K. Chang, H. H. Hsieh, W. F. Pong, M. H. Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang, and S. T. Lin, “Quantum confinement effect in diamond nanocrystals studied by X-Ray -Absorption spectroscopy”, Phys. Rev. Lett., vol. 82, pp.5377-5380, 1999.
    27. J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, “Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions”, Nature, vol. 408, pp. 692-695, 2000.
    28. G. Ciccotti, and W. G. Hoover, Molecular-Dynamics simulation of statistical mechanical systems, North-Holland Physics Publishing, Amsterdam, The Netherlands, 1986.
    29. J. Callaway, X. Zou, and D. Bagayoko, “Total energy of metallic lithium”, Phys. Rev. B, vol. 27, pp. 631-635, 1983.
    30. W. T. Hicks, “Evaluation of vapor pressure data for mercury, lithium, sodium, and potassium”, J. Chem. Phys., vol. 38, pp.1873-1880, 1963.
    31. ANSYS User’s Manual, 00049 ANSYS Revision 5.2, vol. 3, Elements. SAS IP, Inc. pp. 4-217, 1995.
    32. W. D. Calister, Materials Science and Engineering: An Introduction 3rd Edition, John Wiley & Sons, Inc.
    33. K. A. Gschneidner, “Physical properties and interrelationships of metallic and semimetallic elements”, Solid State Phys., vol. 16, pp. 275-426, 1964.
    34. L. H. van Vlack, Elements of Materials Science and Engineering 6th Edition, Addison-Wesket Publishing company, 1989.
    35. J. F. Shackelford, Introduction to Materials Science for Engineers 2nd Edition, Macmillan Publishing Company, 1988.
    36. A. Guinier, The Structure of Matter, Edward Arnold, 1980.
    37. J. O. Hallquist, LS-DYNA theory manual, Livermore Software Technology Corp., Livermore, CA, 1998.
    38. J. N. Israelachvili, Intermolecular and surface forces: with applications to colloidal and biological systems, Academic Press, London, 1985.
    39. L. A. Girifalco, and V. G. Weizer, “Application of the Morse potential function to cubic metals”, Phys. Rev., vol. 114, pp. 687-690, 1959.
    40. J. S. Kallman, W. G. Hoover, C. G. Hoover, A. J. De Groot, S. M. Lee, and F. Wooten, “Molecular dynamics of silicon indentation”, Phys. Rev. B, vol. 47, pp. 7705-7709, 1993.
    41. D. W. Brenner, B. S. Sinnott, J. A. Harrison, and O. A. Shenderova, “Simulated engineering of nanostructures”, Nanotechnology, vol. 7, pp. 161-167, 1996.
    42. R. E Miller, and V. B Shenoy, “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, vol. 11, pp. 139-147, 2000.
    43. C. Y. Li, and T. W. Chou, “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces”, Composites Science and Technology, vol. 63, pp. 1517-1524, 2003.
    44. M. Rieth, and W. Schommers, “Metallic nanoclusters: computational investigations of their applicability as building blocks in nanotechnology”, Jornal of Computational and Theoretical Nanoscience, vol. 1, pp. 40-46, 2004.
    45. C. Y. Li, and T. W. Chou, “Mass detection using carbon nanotube-based nanomechanical resonators”, Appl. Phys. Lett., vol. 84, pp. 5246-5248, 2004.
    46. Y. R. Jeng, and C. M. Tan, “Theoretical stucy of dislocation emission around a nanoindentation using a static atomistic model”, Phys. Rev. B, vol. 69, 104109, 2004.
    47. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE