簡易檢索 / 詳目顯示

研究生: 傅詩貽
Fu, Shih-Yi
論文名稱: 積體化毛細管與微漸擴流道進料腔之甲醇微型重組器
A Methanol Reformer Integrated with Capillary and Diffusers Based Feed Chamber
指導教授: 蘇育全
Su, Yu-Chuan
曾繁根
Tseng, Fan-Gang
口試委員: 薛康琳
Kan-Lin Hsueh
黃鈺軫
Yuh-Jeen Huang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 燃料電池部分氧化重組反應微型加熱器漸擴結構
外文關鍵詞: fuel cells, POM reaction, micro-heater, diffusers
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醇重組式燃料電池為一整合系統,包括甲醇重組器及質子交換膜燃料電池兩種元件。其中前端甲醇重組器為燃料轉換器,目的是將含氫之甲醇經重組反應後轉換成氫氣提供給質子交換膜燃料電池使用。而後端質子交換膜燃料電池為發電元件,可將氫氣燃料包含的化學能轉為電能。本重組器所使用之部分氧化重組反應(POM)屬於放熱反應,反應物為氣態甲醇且操作溫度需要近200 °C的高溫以提高轉換效率,若外加甲醇蒸散器與加熱器會增加系統的複雜性及降低整體系統效率,因此本實驗將重組器結合微型加熱器與前端漸擴進料反應板,前者可提供少許熱能作為進料汽化熱與觸媒反應起始熱,後者以被動進料方式驅動液體,以耗能較少之毛細管引力與漸擴結構增加甲醇液體流動性與氣體之抗回衝,最後形成一可攜式低耗能之多層產氫裝置。
    目前研究已可將此多層被動式甲醇重組器作基本功能測試,以液態甲醇流量為27µl/min、氧氣流量為7.5 ml/min的流量設定可以得到最好的結果,最大的甲醇轉換率可達90.56%,氫氣產率高達1.175E-05 mole/min,未來將繼續進行不同甲醇進料與氧氣不同比例之測試,最後與本實驗室所設計之電池作搭配研究。


    A micro-scale compact integrated fuel-processing system consisted of methanol reformer, feed chamber with capillary/diffusers and micro-heater is designed. This study presents the fabrication and testing of integrated reforming device. For the micro-diffuser which minimize the consuming energy, there are two different diffuser angles compared. The analysis and investigation of fluid dynamics characteristics are then achieved. The flows are directed by the reason for the friction loss of the diffuser is lower than that of the nozzle due to a difference in the area of cross-section. Besides, combined with the micro-heater can provide enough heat to start-up the activity of catalyst and reduce heat loss by low surface area simultaneously. The pattern on the micro-chip is manufactured by micro – electro - mechanical systems technique (MEMS), methanol and hydrogen inside are directed by the flow channels. Cu/Mn/Zn is selected as a reforming catalyst for exothermic partial oxidation reaction of methanol (POM) and Ni/Cr alloy is for the metal line on micro-heater. The performance of the methanol reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the conversion of methanol is 90.56% and the hydrogen mole rate is 1.175E-05 mol /min. The overall volume of this device is 20 mm(W)×20 mm(L)×2.33 mm(T), can be used for portable installation.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1. 前言 1 1.2. 燃料電池的發展 2 1.3. 甲醇重組製氫工作原理 5 1.4. 甲醇進料流道板 8 1.5. 研究動機與目的 9 第二章 文獻回顧 11 2.1. 甲醇重組反應與其流道設計之效能表現 11 2.2. 微型加熱器相關設計文獻 16 2.3. 甲醇被動進料相關文獻 18 第三章 微型產氫裝置製作與實驗系統 21 3.1. 被動式甲醇進料反應板 21 3.1.1. 毛細管壓差與抗回衝原理 21 3.1.2. 微結構致動機制-nozzle/diffuser 24 3.1.3. 進料流道板設計規劃 25 3.1.4. 各種漸擴流道板設計 26 3.2. 甲醇重組器運作原理 27 3.2.1. 重組器觸媒之製備與反應機制(感謝清華大學醫環所黃鈺軫老師實驗室協助) 27 3.2.2. 觸媒反應活性測試之架構 30 3.2.3. 重組器流道板設計 31 3.3. 微型加熱器 36 3.3.1. 微型加熱器設計原理 36 3.3.2. 微型加熱器之製程 39 3.4. 微型產氫裝置整合 41 3.4.1. 微型產氫裝置流道設計 41 3.4.2. 實驗儀器與環路 43 第四章 微型產氫裝置理論分析 46 4.1. 整合型產氫裝置進料與產物分析 46 4.1.1. 整合型產氫裝置進料比例計算與瓦數調控 46 4.1.2. 整合型產氫裝置產物分析 47 4.2. 整合型產氫裝置之反應焓變化及熱損分析 48 4.3. 理想情況下各流率之POM反應熱焓量及升溫熱估算 50 第五章實驗結果與討論 53 5.1. 被動式甲醇進料反應區拍攝結果與討論 53 5.1.1. 液態進料於反應區之流況分析 53 5.1.2. 氣液共存下反應區之流況分析 57 5.2. 微型加熱器之溫度與電阻計算 61 5.2.1. 加熱器於不同瓦數下之溫度分布 61 5.2.2. 微型加熱器之電阻計算 63 5.3. 整合型產氫裝置理論分析 65 5.3.1. 進料比例與瓦數對產氫效能之影響 65 5.3.2. 整合型產氫裝置反應熱焓及熱損分析 70 第六章 結論與未來工作 73 6.1. 本論文研究結果 73 6.2. 未來研究建議 75 參考文獻 76

    [1] J. Wiley&Sons, Fuel cell systems explained, second edition, James Larm. .
    [2] L. Carrette, K. a Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications.,” Chemphyschem, vol. 1, no. 4, pp. 162–93, Dec. 2000.
    [3] J. Zhang, Y. Tang, C. Song, J. Zhang, and H. Wang, “PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C,” J. Power Sources, vol. 163, no. 1, pp. 532–537, Dec. 2006.
    [4] A. Dufour, “Fuel cells-a new contributor to stationary power,” J. Power Sources, vol. 71, no. 1–2, pp. 19–25, 1998.
    [5] S. Srinivasan and R. Mosdale, “Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century,” Annu. Rev. Energy Env., vol. 24, pp. 281–328, 1999.
    [6] B. Lindström, “Development of a methanol reformer for fuel cell vehicles.” 2003.
    [7] G. Park, D. Seo, S. Park, and Y. Yoon, “Development of microchannel methanol steam reformer,” Chem. Eng. J., vol. 101, pp. 87–92, 2004.
    [8] C. Lamy, J. Léger, and S. Srinivasan, “Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology,” Mod. Asp. Electrochem., 2001.
    [9] A. Heinzel and V. M. Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells,” J. Power Sources, vol. 84, pp. 70–74, 1999.
    [10] B. Lindström and L. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” J. Power Sources, vol. 118, pp. 71–78, 2003.
    [11] K. Jensen, “Microreaction engineering—is small better?,” Chem. Eng. Sci., vol. 56, pp. 293–303, 2001.
    [12] 江炳坤, 「燃料电池双即板流场数值模拟及膜型实验研究」, 武漢理工大學碩士論文. 2006.
    [13] H.-S. Wang and K. Huang, “A high efficient POM micro-methanol reformer,” in NEMS, 2012.
    [14] G. Park, S. Yim, Y. Yoon, C. Kim, D. Seo, and K. Eguchi, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,” Catal. Today, vol. 110, pp. 108–113, 2005.
    [15] R.-F. Horng, H.-M. Chou, W.-C. Chiu, J. A. L. Avalos, M.-P. Lai, and Y.-M. Chang, “Hydrogen Production from an Ethanol Reformer Via Thermal Management Over Various Catalysts,” Energy Procedia, vol. 29, pp. 216–224, Jan. 2012.
    [16] S. Velu, K. Suzuki, and T. Osaki, “Oxidative steam reforming of methanol over CuZnAl ( Zr ) -oxide catalysts ; a new and efficient method for the production of CO-free hydrogen for fuel cells,” R. Soc. Chem., pp. 2341–2342, 1999.
    [17] B. Lindström and L. J. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” J. Power Sources, vol. 118, no. 1–2, pp. 71–78, May 2003.
    [18] S. Hsieh, S. Yang, and J. Kuo, “Study of operational parameters on the performance of micro PEMFCs with different flow fields,” Energy Convers. Manag., vol. 47, pp. 1868–1878, 2006.
    [19] A. Kundu, J. Ahn, S. Park, Y. Shul, and H. Han, “Process intensification by micro-channel reactor for steam reforming of methanol,” Chem. Eng. J., vol. 135, no. 1–2, pp. 113–119, 2008.
    [20] 黃青峯, 「微渠道之微加熱器及溫度感測器設計製作.」,國立中山大學機械與機電工程學系研究所 碩士論文, 2004.
    [21] G. Yan, Z. Tang, P. C. . Chan, J. K. . Sin, I.-M. Hsing, and Y. Wang, “An experimental study on high-temperature metallization for micro-hotplate-based integrated gas sensors,” Sensors Actuators B Chem., vol. 86, no. 1, pp. 1–11, Aug. 2002.
    [22] S. . Lee, D. . Dyer, and J. . Gardner, “Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors,” Microelectronics J., vol. 34, no. 2, pp. 115–126, Feb. 2003.
    [23] P. Fürjes, C. Dücső, M. Ádám, J. Zettner, and I. Bársony, “Thermal characterisation of micro-hotplates used in sensor structures,” Superlattices Microstruct., vol. 35, no. 3–6, pp. 455–464, Mar. 2004.
    [24] P. Guha, S. Ali, C. Lee, F. Udrea, W. Milne, T. Iwaki, J. Covington, and J. Gardner, “Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors,” Sensors Actuators B Chem., vol. 127, no. 1, pp. 260–266, Oct. 2007.
    [25] Y. Mo, Y. Okawa, K. Inoue, and K. Natukawa, “Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors Actuators A Phys., vol. 100, no. 1, pp. 94–101, Aug. 2002.
    [26] Z. Guo and Y. Cao, “A passive fuel delivery system for portable direct methanol fuel cells,” J. Power Sources, vol. 132, no. 1–2, pp. 86–91, May 2004.
    [27] Y. Yang and Y. C. Liang, “A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension,” J. Power Sources, vol. 165, no. 1, pp. 185–195, Feb. 2007.
    [28] N. Paust, S. Krumbholz, S. Munt, C. Müller, P. Koltay, R. Zengerle, and C. Ziegler, “Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations,” J. Power Sources, vol. 192, no. 2, pp. 442–450, Jul. 2009.
    [29] 方逸騏, 「被動式微型直接甲醇燃料電池陽極進料反應板之研製」, 國立清華大學碩士論文. 2012.
    [30] A.Faghri, Heat Pipe Science and Technology. Taylor and Francis, 1984.
    [31] 李冠誼,「 銅鋅基質觸媒於甲醇部分氧化反應之微動力學分析與可調式氧空缺修飾之研究」, 國立清華大學碩士論文. 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE