簡易檢索 / 詳目顯示

研究生: 鄭絜媛
Cheng, Hsieh-Yuan
論文名稱: New Constructions of ZCZ and LCZ Sequences via Generalized Boolean Functions
由布林函數建構零與低相關區間序列之新方法
指導教授: 趙啟超
Chao, Chi-chao
口試委員: 林茂昭
楊谷章
蘇育德
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 139
中文關鍵詞: 零相關區間序列低相關區間序列分碼多工存取似同步分碼多工類同步分碼多工
外文關鍵詞: zero correlation zone sequence, low correlation zone sequence, code-division multiple access, approximately synchronized code-division, quasi-synchronous code-division multiple access
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了幾個直接由布林函數建構零和低相關
    區間序列(Zero or Low Correlation Zone Sequences)的新方法。這些方
    法可以直接造出所要的序列,不需要先有其他特殊的序列,而且這種
    建構方法的編碼器複雜度較低。在我們的方法中,序列的長度和數
    量、信號分布以及零或低相關區間的長度都可以很有彈性地調整。和
    之前的建構方法相比,我們造出的序
    列的零相關區間長度較長而且可以達到或接近理論值的上界。此外,我們建構
    的低相關區間序列的長度是2的次方。目前為止,還沒有人提出長度2n 的
    低相關區間序列的建構方法。


    In this thesis, several new methods for constructing zero or low correlation zone (ZCZ or LCZ) sequence sets from the generalized Boolean functions are proposed. These methods are all direct constructions without the requirement of any special sequences or pre-search sequences and the procedures are with low complexity.
    The proposed methods can freely choose the sequence length, the length of ZCZ and LCZ, the set size and the number of phases as a tradeoff.
    Compared with previous methods, the length of ZCZ in our
    methods is pretty large and the length of the ZCZ can be close to the theoretical bound.
    Besides, the length of LCZ sequences in our method is $2^n$ and constructions for this length were not found before.

    Abstract i Contents ii 1 Introduction 1 2 Background and De nitions 4 2.1 Zero and Low Correlation Zone Sequences . . . . . . . . . . . . . . . . . . . 4 2.2 Generalized Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Generalized Reed-Muller Codes . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Further Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Related Work 13 3.1 Constructions by Special Sequences . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Construction of LCZ Sequence Sets Using M-Sequences . . . . . . . . 13 3.1.2 Construction of ZCZ and LCZ Sequence Sets by Interleaving Special Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Extension Constructions from Given LCZ Sequence Sets . . . . . . . . . . . 18 3.2.1 Method I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Method II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Method III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 ZCZ Sequence Sets from Generalized Boolean Functions . . . . . . . . . . . 20 4 Constructions of ZCZ Sequence Sets from Generalized Boolean Functions 25 4.1 Lemmas of Binary Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Theorems of ZCZ Sequences from Generalized Boolean Functions . . . . . . 26 4.3 Constructions by Combining Two ZCZ Sequence Sets . . . . . . . . . . . . . 53 5 Constructions of LCZ Sequence Sets from Generalized Boolean Functions 80 5.1 Constructions of LCZ Sequence Sets by Uniting a Pair of ZCZ Sequence Sets 80 5.2 Extended Constructions of LCZ Sequence Sets . . . . . . . . . . . . . . . . . 101 5.3 Construction of ZCZ and LCZ Sequence Sets via Sequence Reordering . . . . 122 6 Conclusion 133

    [1] R. De Gaudenzi, C. Elia, and R. Viola, “Bandlimited quasi-synchronous CDMA: A
    novel satellite access technique for mobile and personal communication systems,” IEEE
    J. Sel. Areas Commun., vol. 10, pp. 328–343, Feb. 1992.
    [2] B. Long, P. Zhang, and J. Hu, “A generalized QS-CDMA system and the design of new
    spreading codes,” IEEE Trans. Veh. Technol., vol. 47, pp. 1268–1275, Nov. 1998.
    [3] P. Z. Fan, “Spreading sequence design and theoretical limits for quasisynchronous
    CDMA systems,” EURASIP J. Wireless Commun. and Netw., no. 1, pp. 19–31, 2004.
    [4] N. Suehiro, “A signal design without co-channel interference for approximately synchronized
    CDMA systems,” IEEE J. Sel. Areas Commun., vol. 12, pp. 837–841, Jun.
    1994.
    [5] P. Z. Fan and L. Hao, “Generalized orthogonal sequences and their applications in
    synchronous CDMA systems,” IEICE Trans. Fund., vol. E89-A, pp. 2054–2066, Nov.
    2000.
    [6] K. Takatsukasa, S. Matsufuji, and N. Kuroyanagi, “Ternary ZCZ sequence sets for
    cellular CDMA systems,” IEICE Trans. Fund., vol. E85-A, pp. 2135–2140, Sep. 2002.
    [7] S. Matsufuji, N. Kuroyanagi, N. Suehiro, and P. Z. Fan, “Two types of polyphase
    sequence sets for approximately synchronized CDMA systems,” IEICE Trans. Fund.,
    vol. E86-A, pp. 229–234, Jan. 2003.
    [8] T. Hayashi and S. Matsufuji, “Sets of zero-correlation zone sequence pairs,” in Proc.
    Int. Workshop Signal Design and its Applicat. in Commun., Shimonoseki, Japan, Oct.
    2005, pp. 78–81.
    [9] X. H. Tang, “ZCZ sequences construction from perfect sequences based on interleave
    technique,” in Proc. Int. Workshop Signal Design and its Applicat. in Commun., Shimonoseki,
    Japan, Oct. 2005, pp. 82–85.
    [10] H. Torii, M. Nakamura, and N. Suehiro, “A new class of zero-correlation zone sequences,”
    IEEE Trans. Inf. Theory, vol. 50, pp. 559–565, Mar. 2004.
    [11] H. Torii and M. Nakamura, “Enhancement of ZCZ sequence set construction procedure,”
    IEICE Trans. Fund., vol. E90-A, pp. 535–538, Feb. 2007.
    [12] Z. Zhou, X. Tang, and G. Gong, “A new class of sequences with zero or low correlation
    zone based on interleaving technique,” IEEE Trans. Inf. Theory, vol. 54, pp. 4267–4273,
    Sep. 2008.
    [13] P. Z. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, “Class of binary sequences with
    zero correlation zone,” Electron. Lett., vol. 35, no. 10, pp. 777–779, May 1999.
    [14] X. M. Deng and P. Z. Fan, “Spreading sequence sets with zero correlation zone,” Electron.
    Lett., vol. 36, no. 11, pp. 993–994, May 2000.
    [15] X. H. Tang, P. Z. Fan, D. B. Li, and N. Suehiro, “Binary array set with zero correlation
    zone,” Electron. Lett., vol. 37, no. 13, pp. 841–842, Jun. 2001.
    [16] A. Rathinakumar and A. K. Chaturvedi, “Mutually orthogonal sets of ZCZ sequences,”
    Electron. Lett., vol. 40, no. 18, pp. 1133–1134, Sep. 2004.
    [17] R. Appuswamy and A. K. Chaturvedi, “A new framework for constructing mutually
    orthogonal complementary sets and ZCZ sequences,” IEEE Trans. Inf. Theory, vol. 52,
    pp. 3817–3826, Aug. 2006.
    [18] C. Han, T. Hashimoto, and N. Suehiro, “A novel construction method of zero-correlation
    zone sequences based on complete complementary codes,” in IEEE Int. Symp. Inform.
    Theory, Toronto, Canada, Jul. 2008, pp. 1931–1934.
    [19] S. M. K. Takatsukasa and Y. Tanada, “Formalization of binary sequence sets with zero
    correlation zone,” IEICE Trans. Fund., vol. E87-A, pp. 887–891, Apr. 2004.
    [20] E. I. Krengel, “New binary ZCZ sequence sets with mismatched filtering,” in Proc. Int.
    Workshop Signal Design and its Applicat. in Commun., Chengdu, China, Sep. 2005, pp.
    26–29.
    [21] A. Z. Tirkel, E. I. Krengel, and T. E. Hall, “Sequences with large ZCZ,” in IEEE 8th
    Int. Symp. Spread Spectrum Techniques and Applicat., Sydney, Australia, Aug. 2004,
    pp. 270–274.
    [22] K. Ohue and T. Uto, “A generation method of orthogonal periodic complex number
    sequence sets with periodic zero cross-correlation zones for any period,” IEICE Trans.
    Fund., vol. J39-A, pp. 1185–1197, Jun. 2006.
    [23] Y.-S. Tang, “A novel constructions of zero correlation zone sequences from generalized
    boolean functions,” Master’s thesis, Inst. Commun. Eng., National Tsing Hua Univ.,
    Hsinchu, Taiwan, ROC, 2009.
    [24] Y.-S. Tang, C.-Y. Chen. and C.-C. Chao, “A novel construction of zero correlation zone
    sequences based on boolean functions,” in Proc. IEEE 11th Int. Symp. Spread Spectrum
    Techniques and Applicat., Taichung, Taiwan, 2010, pp. 198–203.
    [25] X. Tang and P. Fan, “A class of pseudonoise sequences over GF(p) with low correlation
    zone,” IEEE Trans. Inf. Theory, vol. 47, pp. 1644–1649, May 2001.
    [26] N. Y. Yu and G. Gong, “A new binary sequence family with low correlation and large
    size,” IEEE Trans. Inf. Theory, vol. 52, pp. 1624–1636, Apr. 2006.
    [27] S.-H. Kim, J.-W. Jang, J.-S. No, and H. Chung, “New constructions of quaternary low
    correlation zone sequences,” IEEE Trans. Inf. Theory, vol. 51, pp. 1469–1477, Apr.
    2005.
    [28] Y.-S. Kim, J.-W. Jang, J.-S. No, and H. Chung, “New design of low correlation zone
    sequence sets,” IEEE Trans. Inf. Theory, vol. 52, pp. 4607–4616, Oct. 2006.
    [29] J.-W. Jang, J.-S. No, and H. Chung, “A new construction of optimal p2 ary low correlation
    zone sequences using unified sequences,” IEICE Trans. Fundamentals, vol. E89-A,
    pp. 2656–2661, Oct. 2006.
    [30] J.-W. Jang, J.-S. No, H. Chung, and X. H. Tang, “New sets of optimal p-ary low
    correlation zone sequences,” IEEE Trans. Inf. Theory, vol. 53, pp. 815–821, Feb. 2007.
    [31] G. Gong, S. W. Golomb, and H.-Y. Song, “A note on low correlation zone signal sets,”
    IEEE Trans. Inf. Theory, vol. 53, pp. 2575–2581, Jul. 2007.
    [32] J.-H. Chung and K. Yang, “New design of quaternary low-correlation zone sequence sets
    and quaternary Hadamard matrices,” IEEE Trans. Inf. Theory, vol. 54, pp. 3733–3737,
    Aug. 2008.
    [33] N. Y. Yu and G. Gong, “New construction of m -ary sequence families with low correlation
    from the structure of Sidelnikov sequences,” IEEE Trans. Inf. Theory, vol. 56,
    pp. 4061–4070, Aug. 2010.
    [34] H. Hu and G. Gong, “New sets of zero or low correlation zone sequences via interleaving
    techniques,” IEEE Trans. Inf. Theory, vol. 56, pp. 1702–1713, Apr. 2010.
    [35] Y.-S. K. J.-W. Jang and S.-H. Kim, “New design of quaternary LCZ and ZCZ sequence
    set from binary LCZ and ZCZ sequence set,” Adv. Math. Commun, vol. 3, pp. 115–124,
    May 2007.
    [36] J.-W. Jang, S.-H. Kim, Y.-S. Kim, and D.-W. Lim, “Sequences with good correlation
    property using Gray mapping,” in Proc. IEEE Inf. Theory Workshop, Dublin, Iieland,
    Jan. 2010, pp. 1–5.
    [37] X. H. Tang, P. Z. Fan, and S. Matsufuji, “Lower bounds on correlation of spreading
    sequence set with low or zero correlation zone,” Electron. Lett., vol. 36, no. 13, pp.
    551–552, Mar. 2000.
    [38] S. Matsufuji, N. Suehiro, N. Kuroyanagi, and P. Z. Fan, “Spreading sequence sets
    for approximately synchronized CDMA system with no co-channel interference and
    high data capacity,” in Proc. 2nd Int. Symp. Wireless Personal Multimedia Commun.,
    Amsterdam, Netherlands, Sep. 1999, pp. 333–339.
    [39] F. J. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes. Amsterdam,
    Netherlands: North-Holland, 1986.
    [40] K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,”
    IEEE Trans. Inf. Theory, vol. 46, pp. 104–120, Jan. 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE