簡易檢索 / 詳目顯示

研究生: 陳孝瑜
論文名稱: 具梯度之奈米碳管固定相之毛細管電層析晶片
A chip based CEC with hydrophobic Gradient Stationary Phase consist of Carbon Nanotubes Nanocolumn
指導教授: 曾繁根
錢景常
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 54
中文關鍵詞: 親疏水梯度奈米碳管毛細管電層析質譜儀
外文關鍵詞: hydrophobic gradient, carbon nanotubes, capillary electrochromatography, MA1DI-TOF-MS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文所呈現的層析晶片具有親疏水梯度的奈米碳管固定相,取代傳統液相層析中使用的多種組成分移動相梯度沖提,延流體行進方向上,奈米碳管表面有一親疏水梯度,待分離的樣品依自身的親疏水程度吸附在相對應的碳管表面,而達到分離的效果。藉由光化學反應和控制奈米碳管的紫外光照射量,可以達到親疏水程度的不同;樣品在管柱中分離後並不沖提出來,而是直接噴灑基質於晶片上方,直接進行質譜的測量。
    質譜儀在生物高分子上的運用,已成為了解生命演化過程中不可或缺的重要工具。近年來,蛋白質體學已成為二十一世紀最熱門的研究主題,隨著愈來愈多的基因排序被解碼,研究人員現正探究基因密碼和不同蛋白質間的關係,進而了解致病的原因。由於最近質譜技術在生化科技方面的軟體(蛋白質序列的軟體)不斷地有突破性的發展,更有利於質譜學家及生化學家進行蛋白質體學的研究。


    This thesis presents a study of capillary electrochromatography chip with hydrophobic gradient stationary phase consist of carbon nanotubes (MWCNTs) array of nano-channels. Driving by EOF (Electroosmotic flow),proteins entered the separation channel and were attracted by the modified MWCNTs surface and then separated according to their own characteristics.
    A human cell contains about 20,000 kinds of proteins anytime. So far the 2D Electrophoresis is the most efficient separating approach. The advantage of this approach is that specific protein can be observed by controlling specific pH range. However, a large area of gel is needed for high resolution. Analyzing and matching through mass spectrometry require long time. Two types of ionization source are commonly used in proteomics, MALDIand ESI. ESI usually combine with chromatography as LC-MS, after separation the substance go through ionizer directly. MALDI will obtain the mass information. But limited by the mechanism, substances have to mixed and crystallized with matrix individually. When the components’ concentrations wildly differ from each other, the rare signal will be sheltered. However, MALDI has advantages like easy operation, auto equipment for producing protein, increase efficiency, high sensitivity, etc. If we can simplify the step of crystallization, we can obtain more information from MALDI.

    致謝 I 摘要 II 目錄 IV 圖目錄 VI 表目錄 IX 第1章 前言 1 1-1 研究背景 1 1-2 簡介毛細管電層析法 8 1-3 研究動機 13 第2章 文獻回顧 15 2-1 階梯梯度 15 2-2 線性梯度 17 2-3 化學表面梯度 22 2-4 梯度之定性方法 26 第3章 實驗設計、設備與方法 28 3-1 實驗設計概念 28 3-2 製程 29 3-3 奈米碳管固定相的最佳化 35 第4章 結果與討論 36 4-1 親疏水梯度的定性 36 4-2 混合物的分離 41 4-3 奈米碳管的最佳化 43 4-4 CEC晶片的質譜應用 46 第5章 結論 50 參考文獻 52

    1. Cikalo, M.G., et al., Capillary electrochromatography
    Analyst, 1998. 123: p. 87R–102R.
    2. Euerby, M.R., et al., Step-gradient Capillary Electrochromatography
    Analyst, 1997. 122: p. 1087.
    3. Jan Sudor, et al., Step change of counterion - a new option in capillary zone electrophoresis. Electrophoresis, 1989. 10(11): p. 802-805.
    4. Bocek, P., et al., Dynamic programming of pH -- a new option in analytical capillary electrophoresis. Journal of Chromatography A, 1989. 470(2): p. 309-312.
    5. Balchunas, A.T. and M.J. Sepaniak, Gradient elution for micellar electrokinetic capillary chromatography. Analytical Chemistry, 2002. 60(7): p. 617-621.
    6. Tsuda, T., pH gradient capillary zone electrophoresis using a solvent program delivery system. Analytical Chemistry, 1992. 64(4): p. 386-390.
    7. Sepaniak, M.J., D.F. Swaile, and A.C. Powell, Instrumental developments in micellar electrokinetic capillary chromatography. Journal of Chromatography A, 1989. 480: p. 185-196.
    8. Lister, A.S., C.A. Rimmer, and J.G. Dorsey, Gradient elution electrochromatography with a flow-injection analysis interface. Journal of Chromatography A, 1998. 828(1-2): p. 105-112.
    9. Choudhary, G., C. Horv嫢h, and J.F. Banks, Capillary electrochromatography of biomolecules with on-line electrospray ionization and time-of-flight mass spectrometry. Journal of Chromatography A, 1998. 828(1-2): p. 469-480.
    10. Behnke, B. and E. Bayer, Pressurized gradient electro-high-performance liquid chromatography. Journal of Chromatography A, 1994. 680(1): p. 93-98.
    11. Yan, C., et al., Gradient Elution in Capillary Electrochromatography. Analytical Chemistry, 1996. 68(17): p. 2726-2730.
    12. Kutter, J.P., S.C. Jacobson, and J.M. Ramsey, Integrated Microchip Device with Electrokinetically Controlled Solvent Mixing for Isocratic and Gradient Elution in Micellar Electrokinetic Chromatography. Analytical Chemistry, 1997. 69(24): p. 5165-5171.
    13. Chaudhury, M.K. and G.M. Whitesides, How to Make Water Run Uphill. Science, 1992. 256(5063): p. 1539-1541.
    14. Loos, K., et al., Combinatorial Approach To Study Enzyme/Surface Interactions. Langmuir, 2005. 21(12): p. 5237-5241.
    15. Roberson, S.V., et al., Multifunctional ToF-SIMS: combinatorial mapping of gradient energy substrates. Applied Surface Science, 2002. 200(1-4): p. 150-164.
    16. Kennedy, S.B., et al., Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials, 2006. 27(20): p. 3817-3824.
    17. N.□. Gallant, et al., Universal Gradient Substrates for ldquoClickrdquo Biofunctionalization. Advanced Materials, 2007. 19(7): p. 965-969.
    18. Ito, Y., et al., The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation. Langmuir, 2006. 23(4): p. 1845-1850.
    19. Morgenthaler, S., C. Zink, and N.D. Spencer, Surface-chemical and -morphological gradients. Soft Matter, 2008. 4(3): p. 419-434.
    20. Zhao, H. and D. Beysens, From Droplet Growth to Film Growth on a Heterogeneous Surface: Condensation Associated with a Wettability Gradient. Langmuir, 2002. 11(2): p. 627-634.
    21. Pitt, W.G., Fabrication of a continuous wettability gradient by radio frequency plasma discharge. Journal of Colloid and Interface Science, 1989. 133(1): p. 223-227.
    22. Ruardy, T.G., et al., Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports, 1997. 29(1): p. 3-30.
    23. Elwing, H., et al., A wettability gradient method for studies of macromolecular interactions at the liquid/solid interface. Journal of Colloid and Interface Science, 1987. 119(1): p. 203-210.
    24. Wahlgren, M., et al., Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface. Colloids and Surfaces B: Biointerfaces, 1995. 4(1): p. 23-31.
    25. Liedberg, B. and P. Tengvall, Molecular Gradients of .omega.-Substituted Alkanethiols on Gold: Preparation and Characterization. Langmuir, 2002. 11(10): p. 3821-3827.
    26. Lin, Y., Finite difference solutions for parabolic equations with the time weighting initial conditions. Applied Mathematics and Computation. 65(1-3): p. 49-61.
    27. Lee, J.H., et al., Characterization of wettability gradient surfaces prepared by corona discharge treatment. Journal of Colloid and Interface Science, 1992. 151(2): p. 563-570.
    28. Felten, A., et al., Effect of oxygen rf-plasma on electronic properties of CNTs. Journal of Physics D: Applied Physics, 2007. 40(23): p. 7379-7382.
    29. Naoki Yasuda, et al., Photocrosslinking reaction of vinyl-functional polyphenylsilsesquioxane sensitized with aromatic bisazide compounds. Journal of Polymer Science Part A: Polymer Chemistry, 2001. 39(24): p. 4196-4205.
    30. Moghaddam, M.J., et al., Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Letters, 2003. 4(1): p. 89-93.
    31. Zhang, R.Y., et al., Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst. Nano Letters, 2003. 3(6): p. 731-735.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE