簡易檢索 / 詳目顯示

研究生: 陳頌華
Chen, Sung-Hua
論文名稱: 沉浸邊界法於二維仿生翅膀之流場分析
2D Numerical Simulation for the Biomimetic Wings Using Immersed Boundary Method
指導教授: 林昭安
Lin, Chao-An
口試委員: 林昭安
Lin, Chao-An
崔燕勇
Huang, Chih-Yung
黃智永
Tsui, Yeng-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 68
中文關鍵詞: 沉浸邊界法仿生昆蟲流場分析二維
外文關鍵詞: Immersed-boundary method, Insect flight, Numerical Simulation, 2D
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • For the investigation of the high efficiency and high lift force of insect fight, a simulation of fluid field with a single wing at low Re is performed. The immersed boundary
    method (IBM) is used to solve the complex flow with dynamically moving boundaries on fixed Cartesian grids. In comparison to the solutions of Wang [33] and Luo [35], the simulation results of IBM, such as vorticity fi eld, CL and
    CD, are quite accurate. To explore more details about the unsteady aerodynamics, several parameters investigated here include of path, stroke amplitude, Reynolds number (Re) and aspect ratio. The di erent paths correlate with the vortex shedding and the way of wake capture, and in this study, the horizontal stroke plane case shows a larger CL and CD. Based on the fraction of stroke amplitude and the chord length,
    a larger amplitude means a larger flapping velocity, and results in a larger CL and CD. In the range of low Re, the profiles are almost the same but become greater on CL and smaller on CD as the Re increases. In the case of di erent aspect ratio(AR), it seems that after AR > 4, this characteristic does have a small contribution to CL and CD where CL is proportional to AR but CD is the opposite. For a further discussion of the di erent physical e ects on the CL and CD, we introduce the force element theory. This theory isolates four constitute mechanisms, which all need surface integral on the immersed boundary. By assuming a linear relation in the vicinity of the boundary, we can do a linear interpolation to solve the coefficients, and finally get the desired variables. The interpolation stencil is eithered
    isoscales-triangle or right-triangle based on the direction of normal vector (n) on the immersed-boundary.The results basically coincide with IBM, but the magnitude still needs continued modi fication.


    For the investigation of the high efficiency and high lift force of insect fight, a simulation of fluid field with a single wing at low Re is performed. The immersed boundary
    method (IBM) is used to solve the complex flow with dynamically moving boundaries on fixed Cartesian grids. In comparison to the solutions of Wang [33] and Luo [35], the simulation results of IBM, such as vorticity fi eld, CL and
    CD, are quite accurate. To explore more details about the unsteady aerodynamics, several parameters investigated here include of path, stroke amplitude, Reynolds number (Re) and aspect ratio. The di erent paths correlate with the vortex shedding and the way of wake capture, and in this study, the horizontal stroke plane case shows a larger CL and CD. Based on the fraction of stroke amplitude and the chord length,
    a larger amplitude means a larger flapping velocity, and results in a larger CL and CD. In the range of low Re, the profiles are almost the same but become greater on CL and smaller on CD as the Re increases. In the case of di erent aspect ratio(AR), it seems that after AR > 4, this characteristic does have a small contribution to CL and CD where CL is proportional to AR but CD is the opposite. For a further discussion of the di erent physical e ects on the CL and CD, we introduce the force element theory. This theory isolates four constitute mechanisms, which all need surface integral on the immersed boundary. By assuming a linear relation in the vicinity of the boundary, we can do a linear interpolation to solve the coefficients, and finally get the desired variables. The interpolation stencil is eithered
    isoscales-triangle or right-triangle based on the direction of normal vector (n) on the immersed-boundary.The results basically coincide with IBM, but the magnitude still needs continued modi fication.

    Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Unsteady Mechanism in Insect Flight . . . . . . . . . . . . . . . . . . 4 1.2.1 Clap-and-Fling . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Delayed Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Rotational Circulation . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Wake Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . 12 2 Numerical Methods 15 2.1 Methology of the Immersed-Boundary Method . . . . . . . . . . . . . 15 2.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Forcing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Force Element Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 The Force Decomposition . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Treatment of Immersed Boundaries and Interpolation points . 24 2.2.3 Integration of the Force Element . . . . . . . . . . . . . . . . 26 2.2.4 Surface Integral at the immersed interface . . . . . . . . . . . 28 2.3 The Full Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . 30 ii 3 Results and Discussions 39 3.1 Grid Convergence and Periodicity Test . . . . . . . . . . . . . . . . . 40 3.2 Simple Simulation for One Wing . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 The Position of The Wing Motion . . . . . . . . . . . . . . . . 40 3.2.2 The Vorticity Field . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.3 The Lift and Drag Force . . . . . . . . . . . . . . . . . . . . . 44 3.3 Surface Force Integral at the Embedded-boundary . . . . . . . . . . . 47 4 Conclusions and Future Work 61 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Reference
    [1] T. Weis-Fogh and M. Jensen, "Biology and physics of locust fight. I. Basic principles in insect fight. A critical review." Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 239, 1956, pp.415-458.
    [2] T. Weis-Fogh, "Quick estimates of fight fi tness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol, Vol. 59, 1973, pp.169-230
    [3] M. J. Lighthill, On Weis-Fogh mechanism of lift generation. J. Fluid Mech., Vol 60, 1973, pp.1-17
    [4] T. Maxworthy, "Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the 'fling'." J. Fluid Mech., Vol.93, 1979, pp. 47-63.
    [5] R. H. Edwards and H. K. Cheng, "The Seperation Vortex in the Weis-Fogh Circulation-Generation Mechanism." J. Fluid Mech.,Vol. 120, 1982, pp.463-473.
    [6] G. R. Spedding and T. Maxworthy, "The generation of circulation and lift in a rigid two-dimensional fling," J. Fluid Mech.,Vol. 165, 1986, pp.247-272.
    [7] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 1-15.64
    [8] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 17-40.
    [9] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. III. Kinematics.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 41-78.
    [10] C. P. Ellingtons, "The Aerodynamics of Hovering Insect Flight. IV. Aerodynamic Mechanisms.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 79-113.
    [11] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. V. A Vortex Theory.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 115-144.
    [12] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. VI. Lift and Power Requirement.", Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, Vol. 305, No. 1122,1984, pp. 145-181.
    [13] A. R. Ennos, "A dynamic localization model for large-eddy simulation of turbulent flows.", J. Exp. Biol, Vol. 142, 1989, pp.49-85.
    [14] M. H. Dickinson, "The Eff ects of wing Rotation on Unsteady Aerodynamic Performance at Low Reynolds Numbers.", J. Exp. Biol, Vol. 192, 1994, pp.179-206.
    [15] M. H. Dickinson and K. G. Gotz, "Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers.", J. Exp. Biol, Vol. 174, 1993, pp.45-64.
    [16] M. H. Dickinson, "The Active Control of Wing Rotation by Drosophila.", J. Exp. Biol, Vol. 182, 1993, pp.173-189.
    [17] C. P. Ellington, C. V. D. Berg, A. P. Willmott and A. L. R. Thomas, Leading-Edge Vortices in Insect Flight.", Nature, Vol. 384, 1996, pp. 19-26.
    [18] M. H. Dickinson and K. G. Gotz, "The Wake Dynamics and Flight Forces of The Fruit Fly Drosophila Melanogaster.", J. Exp. Biol, Vol. 182, 1996, pp.173-189.
    [19] M. H. Dickinson, F. O. Lehmann and S. P. Sane, "Wing Rotation and the Aerodynamic Basis of Insect Flight.", Science, Vol. 284, 1999, pp.1954-1960.
    [20] H. Liu, C. P. Ellington, K. Kawachi, C. V. D. Berg, A. P. Willmott, "A Computational Fluid Dynamic Study of Hawkmoth Hovering.", J. Exp. Biol, Vol. 201, 1998, pp.461-477.
    [21] M. Sun and J. Tang, "Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion", J. Exp. Biol, Vol. 205, 2002, pp.55-70.
    [22] Z. J. Wang, "Two Dimensional Mechanism for Insect Hovering", Physical Review Letters, Vol. 85, 2000, pp.2216-2219.
    [23] Z. J. Wang, "Vortex shedding and frequency selection in
    flapping flight.", J. Fluid Mech., Vol.410, 2000, pp. 323-341.
    [24] J. M. Birch and M. H. Dickinson, "Spanwise
    ow and the attachment of the leading-edge vortex.", Nature, Vol. 412, 2001, pp. 729-733.
    [25] M. H. Dickinson, "Solving the mystery of insect flight - Insects use a combination of aerodynamic eff ects to remain aloft.", Sci. American, Vol. 284, 2001, pp. 48-57.
    [26] J. A. Walker, "Rotational Lift: Something or More of the Same?", J. Exp. Biol, Vol. 205, 2002, pp.3783-3792.
    [27] M. H. Dickinson and S. P. Sane, "The Aerodynamic E ects of Wing Rotation and A Revised Quasi-Steady Model of Flapping Flight.", J. Exp. Biol, Vol.
    205, 2002, pp.1087-1096.
    [28] M. Sun and J. Tang, "Lift and Power Requirements of Hovering Flight in Drosophila virilis.", J. Exp. Biol, Vol. 205, 2002, pp.2413-2427.
    [29] Z. J. Wang, J. M. Birch and M. H. Dickinson, "Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computation vs Robotic Wing Experiments.", J. Exp. Biol, Vol. 207, 2004, pp.449-460.
    [30] L. A. Miller and C. S. Peskin, "When vortices stick: an aerodynamic transition in tiny insect flight.", J. Exp. Biol, Vol. 207, 2004, pp.3073-3088.
    [31] S. P. Sane, "Review - The Aerodynamic E ects of Insect Flight.", J. Exp. Biol, Vol. 206, 2003, pp.4191-4208.
    [32] Z. J. Wang, "Dissecting Insect Flight.", Annu. Rev. Fluid Mech., Vol. 37, 2005, pp.183-210.
    [33] Sheng Xu, Z. J. Wang, "An immersed interface method for simulating the interaction of a fluid with moving boundaries." J. Comp. Phys., Vol 216, 2006, pp.454-493.
    [34] C. C. Liao, Y. W. Chang, C. A. Lin and J. M. McDonough, "Simulating flows with moving rigid boundary using immersed-boundary method." Computers & Fluids, Vol 39, 2010, pp.152-167.
    [35] H. Luo, H. Diao, Paulo J. S. A., F. de Sousa and B. Yin, "On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries." Computers & Fluids, Vol 56, 2011, pp. 61-76
    [36] J. Eldredge, "Numerical simulation of the
    fluid dynamics of 2d rigid body motion with the vortex particle method." J. Comp. Phys., Vol 221, 2007, pp.626-648.
    [37] C. T. Hsieh, C. C. Chang and C. C. Chu, "Revisiting the aerodynamics of hovering flight using simple models." J. Fluid Mech., Vol.623, 2009, pp. 121-148.
    [38] C. C. Chang, "Potential flow and forces for incompressible viscous flow." Proc. R. Soc. Lond. A, Vol.437, 1992, pp. 517-525.
    [39] J. Yang, E. Balaras, "An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries." J. Comp. Phys., Vol 215, 2006, pp.12-40.
    [40] J. Kim, D. Kim, H. Choi, "An immersed-boundary nite-volume method for simulations of flow in complex geometries." J. Comp. Phys., Vol 171, 2001, pp.132-150.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE