研究生: |
蔡承翰 Tsai, Cheng-Han |
---|---|
論文名稱: |
拋棄式真空模組開發 及其應用於手持式多功能微流體驅動系統 Disposable Vacuum Module and Its Applications to Handheld Multifunctional Microfluidic Driving System |
指導教授: |
洪健中
Hong, Chien-Chong |
口試委員: |
陳治平
Chen, Chie-Pein 曾繁根 Tseng, Fan-Gang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 形狀記憶高分子 、真空模組 、微流體 |
外文關鍵詞: | Shape memory polymer, vacuum module, microfluidic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去許多研究文獻發展各類微流體驅動元件與系統,但是大多不具實用性,至今尚無研究能同時解決體積龐大、價格昂貴、樣本損失、製程複雜以及封裝困難以及多功能微流體操控等重點照護 (point-of-care) 檢測系統之需求的瓶頸。在本論文研究中,以形狀記憶高分子材料發展成為真空模組,此真空模組為一個結構完整、體積微小、易於脫模、價格低廉、易於大量製作且可重複使用的商業化需求真空模組,此真空模組易於貼附整合進微系統晶片中使用,達成多步驟之微流體驅動,並以此發展出一個手持式多功能微流體操控裝置,成為可以分段控制微流體在微流道之流速、流量且可攜帶式之裝置。本研究所發展之真空模組有效地改善前述所提之缺點,且完全不需連接任何管線於真空模組上,提升使用效率及簡化了傳統裝置的操作複雜,實現了重點照護檢測系統之手持式系統需求,利用真空模組成功發展出完善的手持式多功能微流體操控系統。
本研究主要分成三部份,其一為改善真空模組本身機械性質與穩定度,以及針對真空模組之形狀記憶效應之回復量與其所產生之真空壓力作基礎量測,在改善真空模組本身之機械性質與穩定度方面,利用了鐵氟龍材料不易沾黏的特性,使真空模組能夠大量製作,並且縮小了真空模組的大小,縮小至2 cm x 2 cm的方形結構,且可以在任意調整凹槽深度在0.5 mm ~ 1.5 mm區間,來達成不同真空壓力。而在機械性質上也有大幅改進,在暫態形狀壓平率方面,從原本的68.4 %改善至99.28 %;在形狀記憶效應的回復率上也可維持在98 %以上;另外也對重複使用性、熱壓溫度以及凹槽深度作探討。
其二設計了PID (Proportion Integration Differentiation) 控制器來溫控真空模組之加熱源,並且以PID控制器溫控加熱源來增快調整微流體驅動時間與流體速度。在使用定電流150 mA於矽膠微加熱片做為真空模組之加熱源條件下,其形狀記憶效應可於約300秒時完成,而在加入PID控制器溫控加熱源後,可將時間縮短到150秒完成,顯見其溫控成效;而在動態壓力量測上,在100 µl內所產生之最大壓力呈現穩定線性關係,其產生負壓範圍為-0.3 psi ~ -7.2 psi。在微流體驅動方面,加入PID控制器可將平均流速從10.153 µl/min提升為26.028 µl/min,最大流速從原本的26.25 µl/min提升為90.9375 µl/min,流速可由此方式來調整。
其三為以定電流加熱矽膠微加熱片作為熱源於真空模組實現手持式之多功能微流體操控裝置,使其能與手持式蛋白質感測晶片結合,成為定點照護型式之生醫檢測系統。而本研究進一步將所開發的真空模組發展出手持式多功能微流體操控裝置,使用9 V電池做為矽膠微加熱片之供電來源,並且應用此裝置達成了單段微流體驅動、兩段微流體驅動、四段微流體驅動。
This thesis developed a novel vacuum module by shape memory polymer. This vacuum module is with the advantages of commercial needs, which are complete structure, easy to casting and massive production low price, and reusable. This vacuum module is easy to attach and integrated into microsystem chips, further to achieve multi-step microfluidic driving. This thesis also develop a handheld multifunctional microfluidic driving device, and microfluidic can be multi-controlled its flow rate and flow amount by this portable device. In the past, there are many microfluidic elements and systems have been developed. Yet due to the main goal of the research are expected to achieve the point-of-care system, there are many issues need to be concerned, such as enormous size, high prize, loss of sample, complicated fabrication, and cannot be multi-controlled, most of researches are not suitable enough. However, the vacuum module developed in this thesis has improved the disadvantages we have mentioned. Our developed vacuum module without any tubing connection has achieved the requirement of point-of-care handheld system.
This research can be separated to three parts, the first part is improve the mechanical properties and stability of vacuum modules and measure the recovery distance and vacuum pressure of vacuum module. In order to improve then mechanical properties and stability, we use PTFE (Polytetrafluoroethene) as the material of mold. It makes vacuum module can be produced massively. In the same time, we also reduced the size of vacuum module to 2 cm x 2 cm cube, and the height is adjustable between 0.5 mm ~ 1.5 mm for different vacuum pressure requirement. In the other hand, the flatten rate of temporary shape is up to 99.28%, and the recovery rate of shape memory effect maintain 98%. We also investigate reusability, temperature of hot embossing and the depth of cavity.
The second part, we have designed the PID (Proportion Integration Differentiation) controller to control the heating source of vacuum module. In the same time, we use PID controller to adjust driving time of microfluidic and flow rate. In the condition of constant currant 150 mA to micro heating pad as the heating resource of vacuum module, the shape memory effect finish after 300 second, and after PID controller control the heating source, the reaction time can be reduced to 150 second. For the dynamic pressure measurement, the relation between volume and maximum pressure is linear, and the maximum differential pressure is -7.2 psi. For the microfluidic driving, with PID controller, the average flow rate is 26.028 µl / min. The maximum flow rate can be up to 90.9375 µl / min. The flow rate is adjustable.
The third part is combine vacuum module with handheld C-reactive protein sensing chip to develop a point-of-care biomedical system. This thesis has developed a handheld multifunctional microfluidic driving system using a 9 V battery as power supply to the micro heating pad. Using the developed system can successfully achieve single microfluidic driving, two-stage microfluidic driving, and four-stage microfluidic driving.
[1] Bean, K.E., ANISOTROPIC ETCHING OF SILICON. Ieee Transactions on Electron Devices, 1978. 25(10): p. 1185-1193.
[2] Kovacs, G., Micromachine Transducers Sourcebook, ed. P. Alto1998: CA: WCB/McGraw-Hill.
[3] Neukermans, A. and R. Ramaswami, MEMS technology for optical networking applications. Ieee Communications Magazine, 2001. 39(1): p. 62-69.
[4] Yao, J.J., RF MEMS from a device perspective. Journal of Micromechanics and Microengineering, 2000. 10(4): p. R9-R38.
[5] Pattekar, A.V. and M.V. Kothare, A microreactor for hydrogen production in micro fuel cell applications. Journal of Microelectromechanical Systems, 2004. 13(1): p. 7-18.
[6] Liu, C., Recent developments in polymer MEMS. Advanced Materials, 2007. 19(22): p. 3783-3790.
[7] Vilkner, T., D. Janasek, and A. Manz, Micro total analysis systems. Recent developments. Analytical Chemistry, 2004. 76(12): p. 3373-3385.
[8] Ahn, C.H., et al., Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the Ieee, 2004. 92(1): p. 154-173.
[9] Auroux, P.A., et al., Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry, 2002. 74(12): p. 2637-2652.
[10] Amirouche, F., Y. Zhou, and T. Johnson, Current micropump technologies and their biomedical applications. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2009. 15(5): p. 647-666.
[11] Smits, J.G., Piezo-electrical micropump, in EP Patent1985: Netherlands.
[12] Nguyen, N.T., X.Y. Huang, and T.K. Chuan, MEMS-micropumps: A review. Journal of Fluids Engineering-Transactions of the Asme, 2002. 124(2): p. 384-392.
[13] Iverson, B.D. and S.V. Garimella, Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics, 2008. 5(2): p. 145-174.
[14] Smits, J.G., PIEZOELECTRIC MICROPUMP WITH 3 VALVES WORKING PERISTALTICALLY. Sensors and Actuators a-Physical, 1990. 21(1-3): p. 203-206.
[15] Tsai, J.H. and L.W. Lin, A thermal-bubble-actuated micronozzle-diffuser pump. Journal of Microelectromechanical Systems, 2002. 11(6): p. 665-671.
[16] Zeng, S.L., et al., Fabrication and characterization of electroosmotic micropumps. Sensors and Actuators B-Chemical, 2001. 79(2-3): p. 107-114.
[17] Su, R.G., et al., Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Analytica Chimica Acta, 2004. 508(1): p. 11-15.
[18] Nguyen, N.T., et al., Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors and Actuators a-Physical, 2000. 79(2): p. 115-121.
[19] Suzuki, H. and R. Yoneyama, Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sensors and Actuators B-Chemical, 2003. 96(1-2): p. 38-45.
[20] Koch, C., V. Remcho, and J. Ingle, PDMS and tubing-based peristaltic micropumps with direct actuation. Sensors and Actuators B-Chemical, 2009. 135(2): p. 664-670.
[21] Choi, J.W., et al., An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab on a Chip, 2002. 2(1): p. 27-30.
[22] Churski, K., J. Michalski, and P. Garstecki, Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device. Lab on a Chip, 2010. 10(4): p. 512-518.
[23] Cantwell, M.L., F. Amirouche, and J. Citerin, Low-cost high performance disposable micropump for fluidic delivery applications. Sensors and Actuators a-Physical, 2011. 168(1): p. 187-194.
[24] Zhang, W., et al., PMMA/PDMS valves and pumps for disposable microfluidics. Lab on a Chip, 2009. 9(21): p. 3088-3094.
[25] Nakahara, K., et al., A PERISTALTIC MICROPUMP USING TRAVELING WAVES OF POLYMER MEMBRANES DRIVEN BY A SINGLE ACTUATOR, in 2011 Ieee 24th International Conference on Micro Electro Mechanical Systems2011. p. 1083-1086.
[26] Ali Besharatian, K.K., Rebecca L. Peterson, Luis P. Bernal, and Khalil Najafi, A SCALABLE, MODULAR, MULTI-STAGE, PERISTALTIC, ELECTROSTATIC GAS MICRO-PUMP, in MEMS2012: Paris, FRANCE. p. 1001-1004.
[27] Iwai, K., et al., FINGER-POWERED, PRESSURE-DRIVEN MICROFLUIDIC PUMP, in 2011 Ieee 24th International Conference on Micro Electro Mechanical Systems2011. p. 1131-1134.
[28] Zimmermann, M., et al., Capillary pumps for autonomous capillary systems. Lab on a Chip, 2007. 7(1): p. 119-125.
[29] Martinez, A.W., et al., FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a Chip, 2008. 8(12): p. 2146-2150.
[30] Li, J.-m., et al., A bio-inspired micropump based on stomatal transpiration in plants. Lab on a Chip, 2011. 11(16): p. 2785-2789.
[31] Kost, G.J., Principles & practice of point-of-care testing. Vol. 2. 2002: Lippincott Williams & Wilkins.
[32] Hong, C.-C. and J.-C. Chen, Pre-programmable polymer transformers as on-chip microfluidic vacuum generators. Microfluidics and Nanofluidics, 2011. 11(4): p. 385-393.
[33] Leng, J., et al., Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 2011. 56(7): p. 1077-1135.
[34] Gunes, I.S. and S.C. Jana, Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials. Journal of Nanoscience and Nanotechnology, 2008. 8(4): p. 1616-1637.
[35] Ratna, D. and J. Karger-Kocsis, Recent advances in shape memory polymers and composites: a review. Journal of Materials Science, 2008. 43(1): p. 254-269.
[36] Ji, F., et al., Smart polymer fibers with shape memory effect. Smart Materials & Structures, 2006. 15(6): p. 1547-1554.
[37] Schmidt, A.M., Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromolecular Rapid Communications, 2006. 27(14): p. 1168-1172.
[38] Cho, J.W., et al., Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromolecular Rapid Communications, 2005. 26(5): p. 412-416.
[39] Lendlein, A., et al., Light-induced shape-memory polymers. Nature, 2005. 434(7035): p. 879-882.
[40] Yang, B., et al., Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 2006. 47(4): p. 1348-1356.
[41] Lendlein, A. and R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002. 296(5573): p. 1673-1676.
[42] Hampikian, J.M., et al., Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006. 26(8): p. 1373-1379.
[43] Wache, H.M., et al., Development of a polymer stent with shape memory effect as a drug delivery system. Journal of Materials Science-Materials in Medicine, 2003. 14(2): p. 109-112.
[44] Small, W., et al., Laser-activated shape memory polymer intravascular thrombectomy device. Optics Express, 2005. 13(20): p. 8204-8213.
[45] Karp, J.M. and R. Langer, Development and therapeutic applications of advanced biomaterials. Current Opinion in Biotechnology, 2007. 18(5): p. 454-459.
[46] Chen, J.-C., Development of Smart Polymer Chip Structures and Their Application to Microfluidic Power-Modular Systems. 2010.
[47] Liu, C., H. Qin, and P.T. Mather, Review of progress in shape-memory polymers. Journal of Materials Chemistry, 2007. 17(16): p. 1543-1558.
[48] A. E. Torma, a.D.R., Biodesulfurization of rubber materials. Bioprocess Engineering Symposium, 1990. 16: p. 81-87.
[49] Tazuke, S. and S. Okamura, PHOTO AND THERMAL POLYMERIZATION SENSITIZED BY DONOR-ACCEPTOR INTERACTION .I. N-VINYL-CARBAZOLE-ACRYLONITRILE AND RELATED SYSTEMS. Journal of Polymer Science Part a-1-Polymer Chemistry, 1968. 6(10PA): p. 2907-&.
[50] Kelch, A.L.a.S., Shape-Memory Polymers. Vol. 41. 2002: Angewandte Chemie.
[51] G.F. Franklin , J.D.P.a.M.W., Digital Control of Dynamic System1998: Addision Wesley, 3th edition.
[52] Vanweeme.Bk and A.H.W. Schuurs, IMMUNOASSAY USING ANTIGEN-ENZYME CONJUGATES. Febs Letters, 1971. 15(3): p. 232-&.
[53] Poitout, V., et al., A GLUCOSE MONITORING-SYSTEM FOR ON LINE ESTIMATION IN MAN OF BLOOD-GLUCOSE CONCENTRATION USING A MINIATURIZED GLUCOSE SENSOR IMPLANTED IN THE SUBCUTANEOUS TISSUE AND A WEARABLE CONTROL UNIT. Diabetologia, 1993. 36(7): p. 658-663.
[54] Pablo Esquivel, J., et al., Fuel cell-powered microfluidic platform for lab-on-a-chip applications. Lab on a Chip, 2012. 12(1): p. 74-79.
[55] Gall, K., et al., Shape memory polymer nanocomposites. Acta Materialia, 2002. 50(20): p. 5115-5126.
[56] Yang, B., et al., Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. European Polymer Journal, 2005. 41(5): p. 1123-1128.
[57] Shen, J., et al., An integrated chip for immunofluorescence and its application to analyze lysosomal storage disorders. Lab on a Chip, 2012. 12(2): p. 317-324.
[58] Li, L., et al., A plug-based microfluidic system for dispensing lipidic cubic phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluidics and Nanofluidics, 2010. 8(6): p. 789-798.
[59] Stern, E., et al., Label-free biomarker detection from whole blood. Nature Nanotechnology, 2010. 5(2): p. 138-142.
[60] Hong, C.-C., et al., A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. Biosensors & Bioelectronics, 2010. 25(9): p. 2058-2064.
[61] Liu, C.D., et al., Chemically cross-linked polycyclooctene: Synthesis, characterization, and shape memory behavior. Macromolecules, 2002. 35(27): p. 9868-9874.
[62] Muralt, P., Ferroelectric thin films for micro-sensors and actuators: a review. Journal of Micromechanics and Microengineering, 2000. 10(2): p. 136-146.
[63] Koerner, H., et al., Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials, 2004. 3(2): p. 115-120.
[64] Yang, H.A., et al., On the selective magnetic induction heating of micron scale structures. Journal of Micromechanics and Microengineering, 2006. 16(7): p. 1314-1320.
[65] Mohr, R., et al., Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(10): p. 3540-3545.
[66] Lin, D., et al., A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis. Ieee Transactions on Magnetics, 2004. 40(2): p. 1318-1321.
[67] Garcia, J.R., et al., A METHOD FOR CALCULATING THE WORKPIECE POWER DISSIPATION IN INDUCTION-HEATING PROCESSES. Apec '94 - Ninth Annual Applied Power Electronics Conference and Exposition, Vols 1 and 2: Conference Proceedings1994. 302-307.
[68] Stutz, S.S.a.D., Induction heat treatment of steel1985, U.S: American Society for Metals,Metals Park, OH.