研究生: |
曹毓庭 Tsao, Yu-Ting. |
---|---|
論文名稱: |
分析眼房水之抗氧化系統及其與眼睛健康之關係 - 以角膜內皮細胞密度及白內障嚴重程度為例 Analysis of antioxidant system in aqueous humor and its correlation with eye health - the case of corneal endothelial cell density and cataract severity |
指導教授: |
鄭兆珉
Cheng, Chao-Min |
口試委員: |
吳為吉
Wu, Wei-Chi 陳宏吉 Chen, Hung-Chi 陳韻晶 Chen, Yun-Ching 魯才德 Lu, Tsai-Te |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 抗氧化能力 、抗壞血酸 、蛋白質體學 、眼房水 、角膜內皮細胞密度 、白內障 |
外文關鍵詞: | antioxidant capacity, ascorbic acid, proteomics, aqueous humor, corneal endothelial cell density, cataract |
相關次數: | 點閱:128 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化壓力是導致人體老化的一個重要原因,同時也涉及了許多眼睛疾病的病理過程。而為了保護並維持眼睛組織的透明與完整性不受到氧化壓力的傷害,許多抗氧化酵素、蛋白質、小分子化合物們共同建構出了眼房水中獨特的抗氧化防禦系統。眼房水的組成主要來自於血漿,並經由睫狀體的製造與分泌進入眼後房,而在其由眼後房流向眼前房的過程中,眼房水不僅僅提供了養分給沒有血管供應的眼睛組織,同時也提供了重要的抗氧化物質給這些眼睛組織。由於房水循環一直被認為是眼睛內部很重要的抗氧化物質來源。因此,本篇論文的目的就是要探究分析眼房水之抗氧化系統及其與眼睛健康之關係。
我們開發了一個總體抗氧化能力 (total antioxidant capacity, TAC) 分析套組,能夠藉由銅離子Cu2+的還原反應,去檢驗房水中的TAC。而為了進一步探究眼房水之抗氧化能力組成,我們檢測了眼房水之抗壞血酸 (ascorbic acid, AA) 濃度,也同時分析了眼房水之抗氧化蛋白質體學,希望藉由結合小分子檢驗與蛋白質體學的研究,對房水中之抗氧化能力進行較為全面的分析。此外,我們也探究了眼房水之TAC與AA濃度對眼睛健康的影響。我們執行了一個包含129位病人的病例對照研究,去評估眼房水之TAC、AA濃度、與角膜內皮細胞密度之間的關係。在這個研究中,參與者會根據他們原始的角膜內皮細胞密度,被分入角膜內皮細胞密度不足 (角膜內皮細胞密度 < 2100 cells/mm2 )的組別或是健康的對照組。而進一步我們也執行了另一個病例系列研究,去探討眼房水之TAC與白內障嚴重度之關係。
我們的結果顯示AA貢獻了超過70%的眼房水TAC,並且兩者之間是有顯著相關性的 (rho > 0.8, P < 0.001)。此外,我們發現TAC跟AA濃度都是對抗角膜內皮細胞密度不足顯著的保護因子,其中針對角膜內皮細胞密度不足,TAC校正後的勝算比為0.02 (P = 0.017),而AA校正後的勝算比為0.023 (P = 0.033)。而在眼房水之TAC與白內障嚴重度相關性的研究當中,眼房水之TAC展現了與超音波白內障乳化手術耗能之間獨立的關聯性。因此,在結論上,我們發現眼房水之TAC及AA濃度與角膜內皮細胞密度及白內障之嚴重度之間都有顯著的相關性,這樣的結果也許可以推斷房水之TAC及AA濃度皆與眼睛健康密切相關。
Oxidative stress is one of the leading causes of age-related health problems and implicated in the pathological process of various ocular diseases. To protect the transparent ocular tissues from oxidative stress, several antioxidative enzymes, proteins, and small molecules build up the unique antioxidant defense system in the aqueous humor (AqH). AqH is formed from the plasma components and secreated into the posterior chamber by the ciliary body. As the AqH travels from posterior chamber to anterior chamber, it not only supplies nutrition, but also provides antioxidants for the avascular ocular tissues. Because the AqH circulation is considered an important source for the antioxidants in the eye, the purpose of this study is to investigate the antioxidant system in AqH and analyze its correlation with eye health.
We have developed a total antioxidant capacity (TAC) assay to detect the TAC in AqH based on the redox reaction of Cu2+. To further delve into the composition of AqH TAC, we measured the concentration of ascorbic acid (AA), and analyzed the antioxidant proteomics in AqH in order to give a holistic view of the AqH antioxidant capacity. In addition, we have investigated the influence of AqH TAC and AA on eye health. We conducted a case control study with 129 patients to evaluate the correlation among AqH TAC, AA concentrations, and corneal endothelial cell density (ECD). In the study, participants were classified into insufficient endothelial cell density (IECD, ECD < 2100 cells/mm2) group or control group according to their baseline ECD values. Moreover, we have conducted a case series study to investigate the correlation between AqH TAC and cataract severity.
Our findings showed that AA contributes over 70% of the AqH TAC, and there’s a high correlation between AqH TAC and AA concentration (rho > 0.8, P < 0.001). In addition, we found both TAC and AA are significant protective factors against the IECD. The adjusted odds ratio of TAC and AA are 0.02 (P = 0.017) and 0.023 (P = 0.033) respectively for IECD.As to the correlation between AqH TAC and cataract severity, the AqH TAC demonstrated an independent association with the cumulative dissipated energy during the cataract surgery (P < 0.001). In conclusion, the AqH TAC and AA both showed significant correlations with the ECD and the severity of cataract. These results might indicate that both TAC and AA in the AqH have a notable correlation with the eyes’ health.
1. Betteridge, D. J., What is oxidative stress? Metabolism - Clinical and Experimental 2000, 49 (2), 3-8.
2. Sies, H.; Berndt, C.; Jones, D. P., Oxidative Stress. Annual Review of Biochemistry 2017, 86 (1), 715-748.
3. Di Meo, S.; Reed, T. T.; Venditti, P.; Victor, V. M., Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity 2016, 2016, 44.
4. Vara, D.; Pula, G., Reactive Oxygen Species: Physiological Roles in the Regulation of Vascular Cells. Current Molecular Medicine 2014, 14 (9), 1103-1125.
5. Bae, Y. S.; Oh, H.; Rhee, S. G.; Yoo, Y. D., Regulation of reactive oxygen species generation in cell signaling. Mol Cells 2011, 32 (6), 491-509.
6. Phaniendra, A.; Jestadi, D. B.; Periyasamy, L., Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015, 30 (1), 11-26.
7. de Jager, T. L.; Cockrell, A. E.; Du Plessis, S. S., Ultraviolet Light Induced Generation of Reactive Oxygen Species. In Ultraviolet Light in Human Health, Diseases and Environment, Ahmad, S. I., Ed. Springer International Publishing: Cham, 2017; pp 15-23.
8. Carlo, M. B.; Stefania, G.; Alessia, D.; Carlo, C., Oxygen, Reactive Oxygen Species and Tissue Damage. Current Pharmaceutical Design 2004, 10 (14), 1611-1626.
9. Harman, D., Aging: A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology 1956, 11 (3), 298-300.
10. Aruoma, O. I., Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists' Society 1998, 75 (2), 199-212.
11. Trachootham, D.; Lu, W.; Ogasawara, M. A.; Nilsa, R.-D. V.; Huang, P., Redox regulation of cell survival. Antioxid Redox Signal 2008, 10 (8), 1343-1374.
12. Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O., Oxidative stress and antioxidant defense. World Allergy Organ J 2012, 5 (1), 9-19.
13. Mirończuk-Chodakowska, I.; Witkowska, A. M.; Zujko, M. E., Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences 2018, 63 (1), 68-78.
14. Halliwell, B.; Gutteridge, J. M. C., The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics 1990, 280 (1), 1-8.
15. Ames, B. N.; Cathcart, R.; Schwiers, E.; Hochstein, P., Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 1981, 78 (11), 6858-6862.
16. Fabbrini, E.; Serafini, M.; Colic Baric, I.; Hazen, S. L.; Klein, S., Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 2014, 63 (3), 976-981.
17. Buico, A.; Cassino, C.; Ravera, M.; Betta, P.-G.; Osella, D., Oxidative stress and total antioxidant capacity in human plasma. Redox Report 2009, 14 (3), 125-131.
18. Lönnrot, K.; MetsÄ-KetelÄ, T.; Molnár, G.; Ahonen, J.-P.; Latvala, M.; Peltola, J.; PietilÄ, T.; Alho, H., The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radical Biology and Medicine 1996, 21 (2), 211-217.
19. Delamere, N. A., Ascorbic Acid and the Eye. In Subcellular Biochemistry: Ascorbic Acid: Biochemistry and Biomedical Cell Biology, Harris, J. R., Ed. Springer US: Boston, MA, 1996; pp 313-329.
20. Kurutas, E. B., The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016, 15 (1), 71-71.
21. Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A., Are antioxidants helpful for disease prevention? Res Pharm Sci 2010, 5 (1), 1-8.
22. McCord, J. M., Human disease, free radicals, and the oxidant/antioxidant balance. Clinical Biochemistry 1993, 26 (5), 351-357.
23. Becker, M. A.; Jolly, M., Hyperuricemia and associated diseases. Rheumatic Disease Clinics 2006, 32 (2), 275-293.
24. Massey, L. K.; Liebman, M.; Kynast-Gales, S. A., Ascorbate Increases Human Oxaluria and Kidney Stone Risk. The Journal of Nutrition 2005, 135 (7), 1673-1677.
25. Chakraborthy, A.; Ramani, P.; Sherlin, H. J.; Premkumar, P.; Natesan, A., Antioxidant and pro-oxidant activity of Vitamin C in oral environment. Indian Journal of Dental Research 2014, 25 (4), 499.
26. Freegard, T. J., The physical basis of transparency of the normal cornea. Eye 1997, 11 (4), 465.
27. Bassnett, S.; Shi, Y.; Vrensen, G. F. J. M., Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 2011, 366 (1568), 1250-1264.
28. Boettner, E. A.; Wolter, J. R., Transmission of the ocular media. Investigative ophthalmology & visual science 1962, 1 (6), 776-783.
29. Artigas, J. M.; Felipe, A.; Navea, A.; Fandiño, A.; Artigas, C., Spectral Transmission of the Human Crystalline Lens in Adult and Elderly Persons: Color and Total Transmission of Visible Light. Investigative Ophthalmology & Visual Science 2012, 53 (7), 4076-4084.
30. Angi, M.; Kalirai, H.; Coupland, S. E.; Damato, B. E.; Semeraro, F.; Romano, M. R., Proteomic Analyses of the Vitreous Humour. Mediators of Inflammation 2012, 2012, 7.
31. Walsh, K., UV radiation and the eye.
32. Longstreth, J.; De Gruijl, F.; Kripke, M.; Abseck, S.; Arnold, F.; Slaper, H.; Velders, G.; Takizawa, Y.; Van der Leun, J., Health risks. Journal of Photochemistry and Photobiology B: Biology 1998, 46 (1-3), 20-39.
33. Youn, H.-Y.; McCanna, D. J.; Sivak, J. G.; Jones, L. W., In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol Vis 2011, 17, 237-246.
34. Organization, W. H., Ultraviolet radiation. Environmental health criteria 1994, (160).
35. Chen, M.-S.; Hou, P.-K.; Tai, T.-Y.; Lin, B. J., Blood-ocular barriers. Tzu Chi Medical Journal 2008, 20 (1), 25-34.
36. Key, E. Ocular Circulation. https://entokey.com/ocular-circulation-2/.
37. Cunha-Vaz, J., The blood-ocular barriers. Survey of ophthalmology 1979, 23 (5), 279-296.
38. Sridhar, M. S., Anatomy of cornea and ocular surface. Indian J Ophthalmol 2018, 66 (2), 190-194.
39. Umapathy, A.; Donaldson, P.; Lim, J., Antioxidant delivery pathways in the anterior eye. Biomed Res Int 2013, 2013, 207250-207250.
40. Goel, M.; Picciani, R. G.; Lee, R. K.; Bhattacharya, S. K., Aqueous humor dynamics: a review. Open Ophthalmol J 2010, 4, 52-59.
41. Macknight, A. D.; McLaughlin, C. W.; Peart, D.; Purves, R. D.; Carré, D. A.; Civan, M. M., Formation Of The Aqueous Humor. Clinical and Experimental Pharmacology and Physiology 2000, 27 (1‐2), 100-106.
42. Maria, I.; Eugeniu, B.; Suleiman, A., AQUEOUS HUMOR'S BIOCHEMICAL COMPOSITION IN OCULAR PATHOLOGIES. The Moldovan Medical Journal 2019, 62 (2).
43. Brubaker, R. F.; Nagataki, S.; Townsend, D. J.; Burns, R. R.; Higgins, R. G.; Wentworthf, W., The Effect of Age on Aqueous Humor Formation in Man. Ophthalmology 1981, 88 (3), 283-288.
44. McLaren, J. W., Measurement of aqueous humor flow. Experimental Eye Research 2009, 88 (4), 641-647.
45. Nau, C. B.; Malihi, M.; McLaren, J. W.; Hodge, D. O.; Sit, A. J., Circadian variation of aqueous humor dynamics in older healthy adults. Investigative ophthalmology & visual science 2013, 54 (12), 7623-7629.
46. Medindia Glaucoma - Causes, Symptoms, Diagnosis, Treatment & Prevention. https://www.medindia.net/patientinfo/glaucoma.htm.
47. Chen, Y.; Mehta, G.; Vasiliou, V., Antioxidant Defenses in the ocular surface. The Ocular Surface 2009, 7 (4), 176-185.
48. Brubaker, R. F.; Bourne, W. M.; Bachman, L. A.; McLaren, J. W., Ascorbic Acid Content of Human Corneal Epithelium. Investigative Ophthalmology & Visual Science 2000, 41 (7), 1681-1683.
49. Taylor, A.; Jacques, P. F.; Nadler, D.; Morrow, F.; Sulsky, S. I.; Shepard, D., Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. Current Eye Research 1991, 10 (8), 751-759.
50. Riley, M.; Meyer, R.; Yates, E., Glutathione in the aqueous humor of human and other species. Investigative ophthalmology & visual science 1980, 19 (1), 94-96.
51. Kisic, B.; Miric, D.; Zoric, L.; Ilic, A.; Dragojevic, I., Antioxidant Capacity of Lenses with Age-Related Cataract. Oxidative Medicine and Cellular Longevity 2012, 2012, 8.
52. Bhat, K. S.; John, A.; Reddy, P. R.; Reddy, P. S.; Reddy, V. N., Effect of pigmentation on glutathione redox cycle antioxidant defense in whole as well as different regions of human cataractous lens. Experimental Eye Research 1991, 52 (6), 715-721.
53. Lim, J. C.; Umapathy, A.; Grey, A. C.; Vaghefi, E.; Donaldson, P. J., Novel roles for the lens in preserving overall ocular health. Experimental Eye Research 2017, 156, 117-123.
54. Takano, S.; Ishiwata, S.; Nakazawa, M.; Mizugaki, M.; Tamai, M., Determination of ascorbic acid in human vitreous humor by high-performance liquid chromatography with UV detection. Current Eye Research 1997, 16 (6), 589-594.
55. Cicik, E.; Tekin, H.; Akar, S.; Ekmekçi, Ö. B.; Donma, O.; Koldaş, L.; Özkan, Ş., Interleukin-8, Nitric Oxide and Glutathione Status in Proliferative Vitreoretinopathy and Proliferative Diabetic Retinopathy. Ophthalmic Research 2003, 35 (5), 251-255.
56. Michelet, F.; Gueguen, R.; Leroy, P.; Wellman, M.; Nicolas, A.; Siest, G., Blood and plasma glutathione measured in healthy subjects by HPLC: relation to sex, aging, biological variables, and life habits. Clinical Chemistry 1995, 41 (10), 1509-1517.
57. Lykkesfeldt, J.; Michels, A. J.; Frei, B., Vitamin C. Adv Nutr 2014, 5 (1), 16-18.
58. Naidu, K. A., Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2003, 2 (1), 7.
59. Civan, M. M., Chapter 1 Formation of the Aqueous Humor: Transport Components and Their Integration. In Curr. Top. Membr., Academic Press: 2008; Vol. 62, pp 1-45.
60. Ma, N.; Siegfried, C.; Kubota, M.; Huang, J.; Liu, Y.; Liu, M.; Dana, B.; Huang, A.; Beebe, D.; Yan, H.; Shui, Y.-B., Expression Profiling of Ascorbic Acid-Related Transporters in Human and Mouse Eyes. Investigative ophthalmology & visual science 2016, 57 (7), 3440-3450.
61. Huang, W.; Koralewska-Makár, A.; Bauer, B.; Åkesson, B., Extracellular glutathione peroxidase and ascorbic acid in aqueous humor and serum of patients operated on for cataract. Clinica Chimica Acta 1997, 261 (2), 117-130.
62. Badhu, B.; Baral, N.; Lamsal, M.; Das, H.; Dhital, A., Plasma and aqueous humur ascorbic acid levels in people with cataract from diverse geographical regions of Nepal. Southeast Asian journal of tropical medicine and public health 2007, 38 (3), 582.
63. Canadananović, V.; Latinović, S.; Barišić, S.; Babić, N.; Jovanović, S., Age-related changes of vitamin C levels in aqueous humour. Vojnosanitetski pregled 2015, 72 (9), 823-826.
64. Senthilkumari, S.; Talwar, B.; Dharmalingam, K.; Ravindran, R. D.; Jayanthi, R.; Sundaresan, P.; Saravanan, C.; Young, I. S.; Dangour, A. D.; Fletcher, A. E., Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting. Experimental Eye Research 2014, 124, 24-30.
65. Nakazawa, Y.; Oka, M.; Bando, M.; Inoue, T.; Takehana, M., The role of ascorbic acid transporter in the lens of streptozotocin-induced diabetic rat. Biomedicine & Preventive Nutrition 2011, 1 (1), 43-48.
66. Reiss, G. R.; Werness, P. G.; Zollman, P. E.; Brubaker, R. F., Ascorbic Acid Levels in the Aqueous Humor of Nocturnal and Diurnal Mammals. Archives of Ophthalmology 1986, 104 (5), 753-755.
67. Ringvold, A., The Significance of Ascorbate in the Aqueous Humour Protection Against UV-A and UV-B. Experimental Eye Research 1996, 62 (3), 261-264.
68. Kompa, S.; Redbrake, C.; Hilgers, C.; Wüstemeyer, H.; Schrage, N.; Remky, A., Effect of different irrigating solutions on aqueous humour pH changes, intraocular pressure and histological findings after induced alkali burns. Acta Ophthalmologica Scandinavica 2005, 83 (4), 467-470.
69. Maniyar, S. A.; Jargar, J. G.; Das, S. N.; Dhundasi, S. A.; Das, K. K., Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro. Asian Pac J Trop Biomed 2012, 2 (3), 220-222.
70. Ogata, Y.; Kosugi, Y., Ultraviolet spectra of l-ascorbic acid and cupric ascorbate complex. Tetrahedron 1970, 26 (20), 4711-4716.
71. Lawendel, J. S., Ultra-Violet Absorption Spectra of L-Asorbic Acid in Aqueous Solutions. Nature 1957, 180 (4583), 434-435.
72. Nimse, S. B.; Pal, D., Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Advances 2015, 5 (35), 27986-28006.
73. Carr, A. C.; Zhu, B.-Z.; Frei, B., Potential Antiatherogenic Mechanisms of Ascorbate (Vitamin C) and α-Tocopherol (Vitamin E). Circulation Research 2000, 87 (5), 349-354.
74. Aruoma, O. I.; Halliwell, B., Inactivation of α1 -antiproteinase by hydroxyl radicals The effect of uric acid. FEBS Letters 1989, 244 (1), 76-80.
75. Meister, A., On the antioxidant effects of ascorbic acid and glutathione. Biochemical Pharmacology 1992, 44 (10), 1905-1915.
76. Xu, D. P.; Wells, W. W., α-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria. Journal of Bioenergetics and Biomembranes 1996, 28 (1), 77-85.
77. Rubio, C. P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J. J., Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Vet. Res. 2016, 12 (1), 166.
78. Cao, G.; Alessio, H. M.; Cutler, R. G., Oxygen-radical absorbance capacity assay for antioxidants. Free radical biology and medicine 1993, 14 (3), 303-311.
79. DeLange, R. J.; Glazer, A. N., Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Analytical biochemistry 1989, 177 (2), 300-306.
80. Zulueta, A.; Esteve, M. J.; Frígola, A., ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry 2009, 114 (1), 310-316.
81. Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature 1958, 181 (4617), 1199-1200.
82. Teixeira, J.; Gaspar, A.; Garrido, E. M.; Garrido, J.; Borges, F., Hydroxycinnamic acid antioxidants: an electrochemical overview. BioMed research international 2013, 2013.
83. Corral-Aguayo, R. D.; Yahia, E. M.; Carrillo-Lopez, A.; Gonzalez-Aguilar, G., Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. Journal of Agricultural and Food Chemistry 2008, 56 (22), 10498-10504.
84. Janaszewska, A.; Bartosz, G., Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scandinavian journal of clinical and laboratory investigation 2002, 62 (3), 231-236.
85. Miller, N. J.; Rice-Evans, C.; Davies, M. J.; Gopinathan, V.; Milner, A., A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical science 1993, 84 (4), 407-412.
86. Hernández-Rodríguez, P.; Baquero, L. P.; Larrota, H. R., Chapter 14 - Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity. In Bioactive Compounds, Campos, M. R. S., Ed. Woodhead Publishing: 2019; pp 265-288.
87. Erel, O., A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry 2004, 37 (4), 277-285.
88. Benzie, I. F.; Strain, J. J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry 1996, 239 (1), 70-76.
89. Proestos, C.; Komaitis, M., Antioxidant capacity of hops. In Beer in health and disease prevention, Elsevier: 2009; pp 467-474.
90. Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S. E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of agricultural and food chemistry 2004, 52 (26), 7970-7981.
91. Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K. S.; Erçağ, E.; Celik, S. E.; Baki, S.; Yıldız, L.; Karaman, Ş.; Apak, R., A comprehensive review of CUPRAC methodology. Analytical methods 2011, 3 (11), 2439-2453.
92. Prior, R. L.; Cao, G., In vivo total antioxidant capacity: comparison of different analytical methods1. Free Radical Biology and Medicine 1999, 27 (11-12), 1173-1181.
93. Cao, G.; Prior, R. L., Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clinical chemistry 1998, 44 (6), 1309-1315.
94. Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S. E.; Bektaşoğlu, B.; Berker, K. I.; Özyurt, D., Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12 (7), 1496-1547.
95. Bocca, B.; Forte, G.; Pisano, A.; Farace, C.; Giancipoli, E.; Pinna, A.; Dore, S.; Madeddu, R., A pilot study to evaluate levels of aqueous humor trace elements in open-angle glaucoma (formerly, A case-control study to evaluate levels of trace elements in open-angle glaucoma). Journal of Trace Elements in Medicine and Biology 2020, 126560.
96. Zhou, Y.; Hong, F.; Wang, X.; Feng, J.; Zhu, D.; Xu, Y.; Tao, Y., Abnormal levels of aqueous humor trace elements in patients with cytomegalovirus retinitis. Eye 2019, 33 (10), 1606-1612.
97. Panteli, V. S.; Kanellopoulou, D. G.; Gartaganis, S. P.; Koutsoukos, P. G., Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome. Biological trace element research 2009, 132 (1-3), 9.
98. Schmeling, M.; Gaynes, B. I.; Tidow-Kebritchi, S., Heavy metal analysis in lens and aqueous humor of cataract patients by total reflection X-ray fluorescence spectrometry. Powder Diffraction 2014, 29 (2), 155.
99. Jünemann, A. G.; Stopa, P.; Michalke, B.; Chaudhri, A.; Reulbach, U.; Huchzermeyer, C.; Schlötzer-Schrehardt, U.; Kruse, F. E.; Zrenner, E.; Rejdak, R., Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PloS one 2013, 8 (2), e56734.
100. Kulaksızoglu, S.; Karalezli, A., Aqueous Humour and Serum Levels of Nitric Oxide, Malondialdehyde and Total Antioxidant Status in Patients with Type 2 Diabetes with Proliferative Diabetic Retinopathy and Nondiabetic Senile Cataracts. Canadian Journal of Diabetes 2016, 40 (2), 115-119.
101. Beyazyıldız, E.; Cankaya, A. B.; Ergan, E.; Anayol, M. A.; Ozdamar, Y.; Sezer, S.; Tırhış, M. H.; Yılmazbaş, P.; Oztürk, F., Changes of total antioxidant capacity and total oxidant status of aqueous humor in diabetes patients and correlations with diabetic retinopathy. Int J Ophthalmol 2013, 6 (4), 531-536.
102. Bozkurt, E.; Çak1r, B.; Çelik, E.; Do an, E.; Uçak, T.; Alagöz, G., Correlation of the aqueous humor total antioxidant capacity, total oxidant status, and levels of IL-6 and VEGF with diabetic retinopathy status. Arquivos Brasileiros de Oftalmologia 2019, 82, 136-140.
103. Aksoy, H.; Keles, S.; Koçer, I.; Akçay, F., Diabetic Cataract and the Total Antioxidant Status in Aqueous Humor. In Clin. Chem. Lab. Med., 2001; Vol. 39, p 143.
104. Beyazyıldız, E.; Çankaya, A. B.; Beyazyıldız, Ö.; Ergan, E.; Çelik, H. T.; Yılmazbaş, P.; Öztürk, F., Disturbed oxidant/antioxidant balance in aqueous humour of patients with exfoliation syndrome. Japanese journal of ophthalmology 2014, 58 (4), 353-358.
105. Siegfried, C. J.; Shui, Y.-B., Intraocular Oxygen and Antioxidant Status: New Insights on the Effect of Vitrectomy and Glaucoma Pathogenesis. American Journal of Ophthalmology 2019, 203, 12-25.
106. Nucci, C.; Di Pierro, D.; Varesi, C.; Ciuffoletti, E.; Russo, R.; Gentile, R.; Cedrone, C.; Pinazo Duran, M. D.; Coletta, M.; Mancino, R., Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis 2013, 19, 1841-1846.
107. Mancino, R.; Di Pierro, D.; Varesi, C.; Cerulli, A.; Feraco, A.; Cedrone, C.; Pinazo-Duran, M. D.; Coletta, M.; Nucci, C., Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis 2011, 17, 1298-1304.
108. Ergan, E.; Ozturk, F.; Beyazyildiz, E.; Elgin, U.; Sen, E.; Cankaya, A. B.; Celik, T., Oxidant/antioxidant balance in the aqueous humor of patients with glaucoma. Int J Ophthalmol 2016, 9 (2), 249-252.
109. Altinisik, M.; Koytak, A.; Elbay, A.; Toklu, E.; Sezer, T.; Kocyigit, A., Oxidant-Antioxidant Balance in the Aqueous Humor of Patients with Retinal Vein Occlusion. Seminars in Ophthalmology 2018, 33 (5), 675-682.
110. Sorkhabi, R.; Ghorbanihaghjo, A.; Javadzadeh, A.; Rashtchizadeh, N.; Moharrery, M., Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol Vis 2011, 17, 41-46.
111. Kirboga, K.; Ozec, A. V.; Kosker, M.; Dursun, A.; Toker, M. I.; Aydin, H.; Erdogan, H.; Topalkara, A.; Arici, M. K., The Association between Diabetic Retinopathy and Levels of Ischemia-Modified Albumin, Total Thiol, Total Antioxidant Capacity, and Total Oxidative Stress in Serum and Aqueous Humor. J Ophthalmol 2014, 2014, 820853-820853.
112. Bonanno, J. A., Molecular mechanisms underlying the corneal endothelial pump. Experimental eye research 2012, 95 (1), 2-7.
113. Ayala, G.; Dıaz, M.; Martınez-Costa, L., Granulometric moments and corneal endothelium status. Pattern Recognition 2001, 34 (6), 1219-1227.
114. Tekin, K.; Sekeroglu, M. A.; Kiziltoprak, H.; Yilmazbas, P., Corneal densitometry in healthy corneas and its correlation with endothelial morphometry. Cornea 2017, 36 (11), 1336-1342.
115. Galgauskas, S.; Norvydaitė, D.; Krasauskaitė, D.; Stech, S.; Ašoklis, R. S., Age-related changes in corneal thickness and endothelial characteristics. Clin Interv Aging 2013, 8, 1445-1450.
116. Elbaz, U.; Mireskandari, K.; Tehrani, N.; Shen, C.; Khan, M. S.; Williams, S.; Ali, A., Corneal Endothelial Cell Density in Children: Normative Data From Birth to 5 Years Old. American Journal of Ophthalmology 2017, 173, 134-138.
117. Serbecic, N.; Beutelspacher, S. C., Anti-oxidative vitamins prevent lipid-peroxidation and apoptosis in corneal endothelial cells. Cell and Tissue Research 2005, 320 (3), 465-475.
118. Yagi-Yaguchi, Y.; Yamaguchi, T.; Higa, K.; Suzuki, T.; Aketa, N.; Dogru, M.; Satake, Y.; Shimazaki, J., Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. Scientific Reports 2017, 7 (1), 13603.
119. Storr-Paulsen, A.; Singh, A.; Jeppesen, H.; Norregaard, J. C.; Thulesen, J., Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. Acta Ophthalmologica 2014, 92 (2), 158-160.
120. Leelawongtawun, W.; Surakiatchanukul, B.; Kampitak, K.; Leelawongtawun, R., Study of Corneal Endothelial Cells Related to Duration in Diabetes. Journal of the Medical Association of Thailand= Chotmaihet thangphaet 2016, 99, S182-8.
121. Soler, N.; García-Heredia, A.; Marsillach, J.; Mackness, B.; Mackness, M.; Joven, J.; Romero, P.; Camps, J., Paraoxonase-1 Is Associated With Corneal Endothelial Cell Alterations in Patients With Chronic Obstructive Pulmonary Disease. Investigative Ophthalmology & Visual Science 2013, 54 (8), 5852-5858.
122. Oltulu, R.; Satirtav, G.; Kayitmazbatir, E. T.; Bitirgen, G.; Ozkagnici, A.; Karaibrahimoglu, A., Characteristics of the cornea in patients with pseudoexfoliation syndrome. Arquivos Brasileiros de Oftalmologia 2015, 78, 348-351.
123. Zimmermann, N.; Wünscher, M.; Schlötzer-Schrehardt, U.; Erb, C., Corneal endothelial cell density and its correlation with the severity of pseudoexfoliation. Klinische Monatsblatter fur Augenheilkunde 2014, 231 (2), 158-163.
124. Borderie, V. M.; Baudrimont, M.; Vallée, A.; Ereau, T. L.; Gray, F.; Laroche, L., Corneal endothelial cell apoptosis in patients with Fuchs’ dystrophy. Investigative ophthalmology & visual science 2000, 41 (9), 2501-2505.
125. Sousa, H. C. C.; Silva, L. N. P.; Tzelikis, P. F., Corneal endothelial cell density and pterygium: a cross-sectional study. Arquivos brasileiros de oftalmologia 2017, 80 (5), 317-320.
126. Li, X.; Dai, Y.; Xu, W.; Xu, J., Essential role of ultraviolet radiation in the decrease of corneal endothelial cell density caused by pterygium. Eye 2018, 32 (12), 1886-1892.
127. Kheirkhah, A.; Satitpitakul, V.; Hamrah, P.; Dana, R., Patients with dry eye disease and low subbasal nerve density are at high risk for an accelerated corneal endothelial cell loss. Cornea 2017, 36 (2), 196.
128. Kheirkhah, A.; Saboo, U. S.; Abud, T. B.; Dohlman, T. H.; Arnoldner, M. A.; Hamrah, P.; Dana, R., Reduced corneal endothelial cell density in patients with dry eye disease. American journal of ophthalmology 2015, 159 (6), 1022-1026. e2.
129. Ilhan, N.; Ilhan, O.; Coskun, M.; Daglioglu, M. C.; Ayhan Tuzcu, E.; Kahraman, H.; Keskin, U., Effects of smoking on central corneal thickness and the corneal endothelial cell layer in otherwise healthy subjects. Eye & Contact Lens: Science & Clinical Practice 2016, 42 (5), 303-307.
130. Sayin, N.; Kara, N.; Pekel, G.; Altinkaynak, H., Effects of chronic smoking on central corneal thickness, endothelial cell, and dry eye parameters. Cutaneous and ocular toxicology 2014, 33 (3), 201-205.
131. Kara, S.; Gencer, B.; Türkön, H.; Ersan, I.; Ozkanoglu Ekim, Y.; Arikan, S.; Tufan, H. A. In The effect of smoking on corneal endothelial cells, Seminars in ophthalmology, Taylor & Francis: 2017; pp 223-227.
132. Ventura, A. S.; Wälti, R.; Böhnke, M., Corneal thickness and endothelial density before and after cataract surgery. British journal of ophthalmology 2001, 85 (1), 18-20.
133. Suranyi, E.; Berta, A.; Modis, L.; Szalai, E.; Damjanovich, J., Does beta-ray emitting therapy of ciliary body tumors decrease central corneal endothelial cell density? European journal of ophthalmology 2013, 23 (5), 623-628.
134. Slomovic, A. R.; Parrish, R. K., II; Forster, R. K.; Cubillas, A., Neodymium-YAG Laser Posterior Capsulotomy: Central Corneal Endothelial Cell Density. Archives of Ophthalmology 1986, 104 (4), 536-538.
135. Ishii, N.; Yamaguchi, T.; Yazu, H.; Satake, Y.; Yoshida, A.; Shimazaki, J., Factors associated with graft survival and endothelial cell density after Descemet’s stripping automated endothelial keratoplasty. Scientific reports 2016, 6, 25276.
136. Lass, J. H.; Sugar, A.; Benetz, B. A.; Beck, R. W.; Dontchev, M.; Gal, R. L.; Kollman, C.; Gross, R.; Heck, E.; Holland, E. J., Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty. Archives of ophthalmology 2010, 128 (1), 63-69.
137. Kettesy, B.; Nemeth, G.; Kemeny-Beke, A.; Berta, A.; Modis, L., Assessment of endothelial cell density and corneal thickness in corneal grafts an average of 5 years after penetrating keratoplasty. Wiener Klinische Wochenschrift 2014, 126 (9-10), 286-290.
138. Foster, A.; Gilbert, C.; Johnson, G., Changing patterns in global blindness: 1988-2008. Community Eye Health 2008, 21 (67), 37-39.
139. EBAA, 2015 Eye Banking Statistical Report. 2016.
140. Brockmann, T.; Pilger, D.; Brockmann, C.; Maier, A.-K. B.; Bertelmann, E.; Torun, N., Predictive factors for clinical outcomes after primary Descemet’s membrane endothelial keratoplasty for Fuchs’ endothelial dystrophy. Current eye research 2019, 44 (2), 147-153.
141. Racz, A.; Toth, G. Z.; Tarnoki, A. D.; Tarnoki, D. L.; Littvay, L.; Suveges, I.; Nagy, Z. Z.; Nemeth, J., The inheritance of corneal endothelial cell density. Ophthalmic genetics 2016, 37 (3), 281-284.
142. Ivarsdottir, E. V.; Benonisdottir, S.; Thorleifsson, G.; Sulem, P.; Oddsson, A.; Styrkarsdottir, U.; Kristmundsdottir, S.; Arnadottir, G. A.; Thorgeirsson, G.; Jonsdottir, I., Sequence variation at ANAPC1 accounts for 24% of the variability in corneal endothelial cell density. Nature communications 2019, 10 (1), 1284.
143. Chang, Y. K.; Hwang, J. S.; Chung, T. Y.; Shin, Y. J., SOX2 activation using CRISPR/dCas9 promotes wound healing in corneal endothelial cells. Stem Cells 2018, 36 (12), 1851-1862.
144. Guha, S.; Chaurasia, S.; Ramachandran, C.; Roy, S., SLC4A11 depletion impairs NRF2 mediated antioxidant signaling and increases reactive oxygen species in human corneal endothelial cells during oxidative stress. Scientific reports 2017, 7 (1), 4074.
145. Cho, K.-S.; Lee, E. H.; Choi, J.-S.; Joo, C.-K., Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Investigative ophthalmology & visual science 1999, 40 (5), 911-919.
146. Kim, E. C.; Meng, H.; Jun, A. S., N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy. Experimental eye research 2014, 127, 20-25.
147. Sabater, A. L.; Guarnieri, A.; Espana, E. M.; Li, W.; Prósper, F.; Moreno-Montañés, J., Strategies of human corneal endothelial tissue regeneration. Regenerative medicine 2013, 8 (2), 183-195.
148. Kimoto, M.; Shima, N.; Yamaguchi, M.; Amano, S.; Yamagami, S., Role of hepatocyte growth factor in promoting the growth of human corneal endothelial cells stimulated by L-ascorbic acid 2-phosphate. Investigative ophthalmology & visual science 2012, 53 (12), 7583-7589.
149. M. Padua, I. R.; P. Valdetaro, G.; B. Lima, T.; K. Kobashigawa, K.; ES Silva, P.; Aldrovani, M.; M. Padua, P. P.; Laus, J. L., Effects of intracameral ascorbic acid on the corneal endothelium of dogs undergoing phacoemulsification. Veterinary ophthalmology 2018, 21 (2), 151-159.
150. Rubowitz, A.; Assia, E. I.; Rosner, M.; Topaz, M., Antioxidant protection against corneal damage by free radicals during phacoemulsification. Investigative ophthalmology & visual science 2003, 44 (5), 1866-1870.
151. Yue, B.; Niedra, R.; Baum, J., Effects of ascorbic acid on cultured rabbit corneal endothelial cells. Investigative ophthalmology & visual science 1980, 19 (12), 1471-1476.
152. Pascolini, D.; Mariotti, S. P., Global estimates of visual impairment: 2010. British Journal of Ophthalmology 2012, 96 (5), 614.
153. Gollogly, H. E.; Hodge, D. O.; Sauver, J. L. S.; Erie, J. C., Increasing incidence of cataract surgery: population-based study. Journal of Cataract & Refractive Surgery 2013, 39 (9), 1383-1389.
154. Congdon, N.; Vingerling, J.; Klein, B.; West, S.; Friedman, D.; Kempen, J.; O'Colmain, B.; Wu, S.; Taylor, H., Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Archives of ophthalmology (Chicago, Ill.: 1960) 2004, 122 (4), 487-494.
155. Alshamrani, A. Z., Cataracts Pathophysiology and Managements. The Egyptian Journal of Hospital Medicine 2018, 31 (5560), 1-4.
156. Hejtmancik, J. F.; Smaoui, N., Molecular genetics of cataract. Developments in ophthalmology 2003, 37, 67-82.
157. Seddon, J.; Fong, D.; West, S. K.; Valmadrid, C. T., Epidemiology of risk factors for age-related cataract. Survey of ophthalmology 1995, 39 (4), 323-334.
158. Prokofyeva, E.; Wegener, A.; Zrenner, E., Cataract prevalence and prevention in Europe: a literature review. Acta Ophthalmologica 2013, 91 (5), 395-405.
159. Gupta, V. B.; Rajagopala, M.; Ravishankar, B., Etiopathogenesis of cataract: an appraisal. Indian J Ophthalmol 2014, 62 (2), 103.
160. Moreau, K. L.; King, J. A., Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in molecular medicine 2012, 18 (5), 273-282.
161. Sunkireddy, P.; Jha, S. N.; Kanwar, J. R.; Yadav, S. C., Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids and Surfaces B: Biointerfaces 2013, 112, 554-562.
162. Kisic, B.; Miric, D.; Zoric, L.; Ilic, A., Role of lipid peroxidation in the pathogenesis of age-related cataract. In Lipid peroxidation, IntechOpen: 2012.
163. Miric, D.; Kisic, B.; Zoric, L.; Miric, B.; Mirkovic, M.; Mitic, R., Influence of cataract maturity on aqueous humor lipid peroxidation markers and antioxidant enzymes. Eye 2014, 28 (1), 72.
164. Roberts, J. E., Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye & contact lens 2011, 37 (4), 246-249.
165. Selin, J. Z.; Orsini, N.; Lindblad, B. E.; Wolk, A., Long-term physical activity and risk of age-related cataract: a population-based prospective study of male and female cohorts. Ophthalmology 2015, 122 (2), 274-280.
166. Abdelkader, H.; Alany, R. G.; Pierscionek, B., Age‐related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. Journal of Pharmacy and Pharmacology 2015, 67 (4), 537-550.
167. Karppi, J.; Laukkanen, J. A.; Kurl, S., Plasma lutein and zeaxanthin and the risk of age-related nuclear cataract among the elderly Finnish population. British Journal of Nutrition 2012, 108 (1), 148-154.
168. Ishikawa, Y.; Hashizume, K.; Kishimoto, S.; Tezuka, Y.; Nishigori, H.; Yamamoto, N.; Kondo, Y.; Maruyama, N.; Ishigami, A.; Kurosaka, D., Effect of vitamin C depletion on UVR-B induced cataract in SMP30/GNL knockout mice. Experimental eye research 2012, 94 (1), 85-89.
169. Kaur, J.; Kukreja, S.; Kaur, A.; Malhotra, N.; Kaur, R., The oxidative stress in cataract patients. Journal of clinical and diagnostic research: JCDR 2012, 6 (10), 1629.
170. Ravindran, R. D.; Vashist, P.; Gupta, S. K.; Young, I. S.; Maraini, G.; Camparini, M.; Jayanthi, R.; John, N.; Fitzpatrick, K. E.; Chakravarthy, U., Inverse association of vitamin C with cataract in older people in India. Ophthalmology 2011, 118 (10), 1958-1965. e2.
171. Mathew, M. C.; Ervin, A. M.; Tao, J.; Davis, R. M., Antioxidant vitamin supplementation for preventing and slowing the progression of age‐related cataract. Cochrane Database of Systematic Reviews 2012, (6).
172. Thiagarajan, R.; Manikandan, R., Antioxidants and cataract. Free radical research 2013, 47 (5), 337-345.
173. Cui, Y.-H.; Jing, C.-X.; Pan, H.-W., Association of blood antioxidants and vitamins with risk of age-related cataract: a meta-analysis of observational studies. The American journal of clinical nutrition 2013, 98 (3), 778-786.
174. Lee, C.-Y.; Chen, H.-T.; Hsueh, Y.-J.; Chen, H.-C.; Huang, C.-C.; Meir, Y.-J. J.; Cheng, C.-M.; Wu, W.-C., Perioperative topical ascorbic acid for the prevention of phacoemulsification-related corneal endothelial damage: Two case reports and review of literature. World Journal of Clinical Cases 2019, 7 (5), 642.
175. Chua, J.; Koh, J. Y.; Tan, A. G.; Zhao, W.; Lamoureux, E.; Mitchell, P.; Wang, J. J.; Wong, T. Y.; Cheng, C.-Y., Ancestry, socioeconomic status, and age-related cataract in Asians: the Singapore Epidemiology of Eye Diseases Study. Ophthalmology 2015, 122 (11), 2169-2178.
176. Tang, Y.; Wang, X.; Wang, J.; Huang, W.; Gao, Y.; Luo, Y.; Yang, J.; Lu, Y., Prevalence of age-related cataract and cataract surgery in a Chinese adult population: the Taizhou Eye Study. Investigative ophthalmology & visual science 2016, 57 (3), 1193-1200.
177. Cox, J. T.; Subburaman, G.-B. B.; Munoz, B.; Friedman, D. S.; Ravindran, R. D., Visual acuity outcomes after cataract surgery: high-volume versus low-volume surgeons. Ophthalmology 2019, 126 (11), 1480-1489.
178. NIDEK CO., L. Specular Microscope CEM-530. https://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_cornea/cem-530.html.
179. Chylack, L. T., Jr; Wolfe, J. K.; Singer, D. M.; Leske, M. C.; Bullimore, M. A.; Bailey, I. L.; Friend, J.; McCarthy, D.; Wu, S.-Y., The Lens Opacities Classification System III. Archives of Ophthalmology 1993, 111 (6), 831-836.
180. Al-Osaily, A. M.; Al-Jindan, M. Y., Intra-correlations between cataract density based on Scheimpflug image, phacodynamics, surgery duration, and endothelial cell loss after phacoemulsification. Saudi J Ophthalmol 2018, 32 (3), 188-193.
181. Schafer, M. E.; Arbisser, B. In Quantification of acoustic exposure during cataract surgery, IEEE Ultrasonics Symposium, 2004, IEEE: 2004; pp 1828-1831.
182. Liu, C.; Liu, Y.; Ye, S.; Liu, L.; Zhang, W.; Wu, M., Effect of topical nonsteroidal anti-inflammatory drugs and nuclear hardness on maintenance of mydriasis during phacoemulsification surgery. Journal of ocular pharmacology and therapeutics 2014, 30 (10), 831-836.
183. Sorrentino, F. S.; Matteini, S.; Imburgia, A.; Bonifazzi, C.; Sebastiani, A.; Parmeggiani, F., Torsional phacoemulsification: A pilot study to revise the “harm scale” evaluating the endothelial damage and the visual acuity after cataract surgery. PLoS One 2017, 12 (10).
184. PASCAL, J. I., MEANING AND APPLICATION OF THE SPHERICAL EQUIVALENT. The Australasian Journal of Optometry 1954, 37 (4), 157-158.
185. Schulze-Bonsel, K.; Feltgen, N.; Burau, H.; Hansen, L.; Bach, M., Visual Acuities “Hand Motion” and “Counting Fingers” Can Be Quantified with the Freiburg Visual Acuity Test. Investigative Ophthalmology & Visual Science 2006, 47 (3), 1236-1240.
186. Bhardwaj, V.; Rajeshbhai, G. P., Axial length, anterior chamber depth-a study in different age groups and refractive errors. J Clin Diagn Res 2013, 7 (10), 2211-2212.
187. Ning, X.; Yang, Y.; Yan, H.; Zhang, J., Anterior chamber depth — a predictor of refractive outcomes after age-related cataract surgery. BMC Ophthalmology 2019, 19 (1), 134.
188. Chen, L.; Xue, X.; Jiang, D.; Yang, J.; Zhao, B.; Han, X. X.; Mee Jung, Y., A Turn-On Resonance Raman Scattering (BCS/Cu+) Sensor for Quantitative Determination of Proteins. Applied spectroscopy 2016, 70 (2), 355-362.
189. Kaiser, H., Quantitation in Elemental Analysis. Analytical Chemistry 1970, 42 (2), 26A-59A.
190. Chen, C.; Fan, S.; Li, C.; Chong, Y.; Tian, X.; Zheng, J.; Fu, P. P.; Jiang, X.; Wamer, W. G.; Yin, J.-j., Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. Journal of Materials Chemistry B 2016, 4 (48), 7895-7901.
191. Medina-Navarro, R.; Durán-Reyes, G.; Díaz-Flores, M.; Vilar-Rojas, C., Protein antioxidant response to the stress and the relationship between molecular structure and antioxidant function. PLoS One 2010, 5 (1), e8971-e8971.
192. Miyata, M.; Smith, J. D., Apolipoprotein E allele–specific antioxidant activity and effects on cytotoxicity by oxidative insults and β–amyloid peptides. Nature Genetics 1996, 14 (1), 55-61.
193. Du, R.; Winarsih, I.; Ho, B.; Ding, J. L., Lipid-free apolipoprotein A-I exerts an antioxidative role against cell-free hemoglobin. Am J Clin Exp Immunol 2012, 1 (1), 33-48.
194. Dassati, S.; Waldner, A.; Schweigreiter, R., Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014, 35 (7), 1632-1642.
195. Feng, Y.; Xu, J.; Zhou, Q.; Wang, R.; Liu, N.; Wu, Y.; Yuan, H.; Che, H., Alpha-1 Antitrypsin Prevents the Development of Preeclampsia Through Suppression of Oxidative Stress. Front Physiol 2016, 7, 176-176.
196. Liu, H.; Sadygov, R. G.; Yates, J. R., A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical chemistry 2004, 76 (14), 4193-4201.
197. Consortium, T. U., UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 2018, 47 (D1), D506-D515.
198. Apak, R.; Güçlü, K.; Özyürek, M.; Karademi˙ r, S. E. n.; Altun, M., Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free radical research 2005, 39 (9), 949-961.
199. Golizeh, M.; Lee, K.; Ilchenko, S.; Ösme, A.; Bena, J.; Sadygov, R. G.; Kashyap, S. R.; Kasumov, T., Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radical Biol Med 2017, 113, 461-469.
200. Sayyed, A. K.; Despande, K. H.; Suryakar, A. N.; Ankush, R. D.; Katkam, R. V., Oxidative stress and serum α1 — Antitrypsin in smokers. Indian J. Clin. Biochem. 2008, 23 (4), 375-377.
201. Rifai, N.; King, M. E., Immunoturbidimetric assays of apolipoproteins A, AI, AII, and B in serum. Clinical Chemistry 1986, 32 (6), 957.
202. Giblin, F. J.; McCready, J. P.; Kodama, T.; Reddy, V. N., A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Experimental eye research 1984, 38 (1), 87-93.
203. Davison, J. A.; Chylack Jr, L. T., Clinical application of the lens opacities classification system III in the performance of phacoemulsification. Journal of Cataract & Refractive Surgery 2003, 29 (1), 138-145.
204. Hah, Y.-S.; Chung, H. J.; Sontakke, S. B.; Chung, I.-Y.; Ju, S.; Seo, S.-W.; Yoo, J.-M.; Kim, S.-J., Ascorbic acid concentrations in aqueous humor after systemic vitamin C supplementation in patients with cataract: pilot study. BMC Ophthalmol. 2017, 17 (1), 1-5.
205. Hsueh, Y.-J.; Meir, Y.-J. J.; Yeh, L.-K.; Wang, T.-K.; Huang, C.-C.; Lu, T.-T.; Cheng, C.-M.; Wu, W.-C.; Chen, H.-C., Topical Ascorbic Acid Ameliorates Oxidative Stress-Induced Corneal Endothelial Damage via Suppression of Apoptosis and Autophagic Flux Blockage. Cells 2020, 9 (4), 943.
206. Cavalcanti, B.; Leitão, K.; Lira, W.; Cavalcanti, R.; Castro, C., Analysis of Ascorbic Acid Antioxidant Protection Against Corneal Endothelial Damage by Free Radicals in Phacoemulsification Surgeries. Investigative Ophthalmology & Visual Science 2009, 50 (13), 2897-2897.
207. Bourne, W. M.; Nelson, L. R.; Hodge, D. O., Continued endothelial cell loss ten years after lens implantation. Ophthalmology 1994, 101 (6), 1014-1023.
208. Moghanizadeh-Ashkezari, M.; Shokrollahi, P.; Zandi, M.; Shokrolahi, F.; Daliri, M. J.; Kanavi, M. R.; Balagholi, S., Vitamin C loaded poly (urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion. ACS applied materials & interfaces 2019, 11 (39), 35525-35539.
209. Mikirova, N. A.; Ichim, T. E.; Riordan, N. H., Anti-angiogenic effect of high doses of ascorbic acid. Journal of translational medicine 2008, 6 (1), 50.
210. Ellulu, M. S.; Rahmat, A.; Patimah, I.; Khaza’ai, H.; Abed, Y., Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Design, Development and Therapy 2015, 9, 3405.
211. Moskowitz, A.; Andersen, L. W.; Huang, D. T.; Berg, K. M.; Grossestreuer, A. V.; Marik, P. E.; Sherwin, R. L.; Hou, P. C.; Becker, L. B.; Cocchi, M. N., Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Critical Care 2018, 22 (1), 283.
212. Hager, D. N.; Hooper, M. H.; Bernard, G. R.; Busse, L. W.; Ely, E. W.; Gaieski, D. F.; Hall, A.; Hinson, J. S.; Jackson, J. C.; Kelen, G. D., The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) Protocol: a prospective, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial. Trials 2019, 20 (1), 197.