簡易檢索 / 詳目顯示

研究生: 黃信元
Huang, Hsin-Yuan
論文名稱: 具自適應式電容切換技術之低功耗非同步漸近式類比數位轉換器之設計與製作
The Design and Implementation of Power-Efficient Asynchronous SAR ADC with Adaptive Digital-to-Analog Converter Switching Technique
指導教授: 謝志成
Hsieh, Chin-Cheng
口試委員: 謝志成
Hsieh, Chin-Cheng
盧志文
Lu, Chih-Wen
陳巍仁
Chen, Wei-Zen
洪浩喬
Hong, Hao-Chiao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 84
中文關鍵詞: 連續漸進式類比至數位轉換器 Successive
外文關鍵詞: Successive Approximation analog-to-
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述了兩個應用低功耗生醫電路之超低功耗10位元非同步漸近式類比數位轉換器(SAR ADC) 的設計。所提出的兩個類比數位轉換器之供給電源為0.7V至1V, 採樣頻率則為250kS/s至1MS/s。所提出的非同步漸近式類比數位轉換器利用多種技巧來提高ADC功率效率。首先提出一個以分裂式電容切換方式為基礎的自適應式電容切換技術(adaptive digital-to-analog converter switching, ADS),以減少平均切換電容數和來提高電容切換效率。也利用高度匹配的金屬類型單位電容來降低單位電容值進一步減少電容切換功耗。最後,利用動態SAR控制器來減少電晶體數目進一步的優化數位和類比電路之間的功耗權衡。
    為驗證本電路,本論文利用0.18微米混合式訊號CMOS製程來實現此二顆實驗晶片。第一個實驗晶片操作在1V供給電源和500kS/ s的採樣率。在接近Nyquist頻率所測得的有效位元數(ENOB),是9.24位元。總功耗為14.2微瓦,等效的figure of merit(FoM)則為47fJ/Conversion-step。
    第二個實驗晶片則是第一顆實驗晶片的優化版本。操作電源從0.7V到0.9V。在操作電源和取樣頻率為0.9V和1MS / s時的ENOB和總功耗分別為9.33位元和7.84微瓦。由此產生的FoM則是12.1fJ/conversion-step。當操作電源和取樣頻率為降低至0.7V和250KS/ s時的總功耗只有1.07微瓦。由此產生的ENOB和FOM在接近Nyquist的輸入頻率分別是8.8位元和9.58fJ/conversion-step。


    Chapter 1 Inroduction 11 1.1 Architecture Selection 12 1.2 Performance Metrics of SAR ADCs 14 1.2.1 Resolution 14 1.2.2 Quantization Noise 14 1.2.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) 15 1.2.4 Signal-to-Noise Ratio (SNR) 15 1.2.5 Effective Resolution 16 1.2.6 Figure of Merit (FoM) 16 1.3 Motivation 16 1.4 Target Specifications 17 1.5 Thesis Organizations 18 Chapter 2 Successive Approximation Register (SAR ) ADC Overview 19 2.1 Global Operation of SAR ADC 19 2.1.1 Sources of Error 20 2.2 Sampling Network 22 2.2.1 On-Resistance of MOS Switch 22 2.2.2 Charge Injection and Clock Feedthrough 24 2.2.3 Thermal Noise 25 2.3 Digital-to-Analog Converter 26 2.3.1 Binary Weighted DAC 26 2.3.2 DAC Parasitic Capacitance and Capacitor Mismatch 27 2.4 Device Mismatch of Comparator 28 2.5 Successive Approximation Register 29 2.6 Summary 30 Chapter 3 Circuit Design Considerations 31 3.1 Differential SAR ADC 31 3.2 CDAC Switching Energy 33 3.2.1 Energy Saving CDAC Switching in [7] 35 3.2.2 Monotonic Switching Procedure in [18] 38 3.2.3 Concepts of Adaptive DAC switching 40 3.3 Sample and Hold Design Consideration 41 3.4 Comparator Design Consideration 42 3.5 SAR Control Design Consideration 42 3.6 Summary 43 Chapter 4 Circuit Design 44 4.1 Capacitive DAC Design 44 4.1.1 Adaptive DAC Switching Operation 46 4.2 Sampling Network Design 50 4.3 Comparator Design 51 4.4 Asynchronous SAR Logic and DAC Control Logic Design 53 4.5 Enhancements of Prototype 1 56 4.6 Summary 58 Chapter 5 Measurements Results 59 5.1 Measurement Environment Setup 59 5.2 Measurements of First Prototype 60 5.2.1 Static Performance 61 5.2.2 Dynamic Performance 62 5.2.3 Performance Summary and Comparison 64 5.3 Measurement results of Second Prototype 65 5.3.1 Static Performance 67 5.3.2 Dynamic Performance 68 5.3.3 Performance Summary and Comparison 73 5.4 Summary 74 Chapter 6 Conclusion and Future work 76 6.1 Conclusion 76 6.2 Future Work 76 6.2.1 Comparator with Offset Compensation and Supply Boost 77 6.2.2 Sampling Network Improvement 78 Bibliography 80

    [1] A. P. Chandrakasan, N. Verma, and D. C. Daly, “Ultralow-power electronics for biomedical applications, ” Ann. Rev. Biomed. Eng., vol. 10, no. 1, pp. 247-274, 2008.
    [2] B. Murmann, “ADC Performance Survey 1997-2011, ” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [3] H.-C. Hong and G.-M. Lee, “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2161-2168, Oct. 2007.
    [4] N. Verma and A. P. Chandrakasan, “A 25□w 100KS/s 12b ADC for wireless micro-sensor applications,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp.222-223.
    [5] A. Anges, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8□W 100KS/s SAR ADC with time-domain comparator,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp.246-247.
    [6] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications, ”, in IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers, Nov. 2008, pp. 228-231.
    [7] W.-Y. Pang, C-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, "A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications," in IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers, Nov. 2009, pp. 149-152.
    [8] C.-H. Kuo and C.-E. Hsieh, “A high energy-efficiency SAR ADC based on partial floating capacitor switching technique, ” in Proceedings of the ESSCIRC , Sept. 2011, pp.475-478, 12-16.
    [9] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 467-470.
    [10] S.-I. Chang, K. A.-Ashmouny, and E. Yoon, “A 0.5V 20fJ/conversion-step rail-to-rail SAR ADC with programmable time-delayed control units for low-power biomedical application,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 339-342.
    [11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink , and B. Nauta “A 10-bit Charge-Redistribution ADC Consuming 1.9□W at 1MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May. 2010.
    [12] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, "A 0.5V 1.1MS/s 6.3fJ/Conversion-step SAR ADC with Tri-Level Comparator in40nm CMOS," in VLSI Symp. Tech. Dig., Jun.2011, pp.262-263.
    [13] M. Yip and A. P. Chandrakasan, “A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011. pp. 190-192.
    [14] P. Harpe, C. Chou, X. Wang, G. Dolmans, and H. de Groot, “A 30fJ/Conversion-Step 8b 0-to-10MS/s Asynchronous SAR ADC in 90nm CMOS,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp.388-389.
    [15] B. P. Cinsburg and A. P. Chandrakasan, “An Energy-Efficient Charge Recycling Approach for a SAR Converter With Capacitive DAC, ” in IEEE Int. Symposium on Circuits and Systems vol.1, May 2005, pp. 184-187.
    [16] B. P. Ginsburg and A. P. Chandrakasan , “500-MS/s 5-bit ADC in 65-nm CMOS with Split Capacitor Array,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, Apr. 2007.
    [17] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
    [18] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-S. Lin, “A 0.92mW 50-MS/s SAR ADC in 0.13□m CMOS Process,” in VLSI Symp. Tech. Dig., Jun.2009, pp.236-237.
    [19] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-S. Lin, “A 10-bit 50-MS/s SAR ADC With Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits,.,vol. 45, no.4, pp.731-740, Apr. 2010.
    [20] S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100KS/s 10 bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE Journal of Solid-State Circuits,.,vol. 46, no.3, pp.651-659, Apr. 2011.
    [21] J. H. Cheong, K. L. Chan, P. B. Khannur, K. Tee, and M. Je, " A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18um CMOS," IEEE Trans. Citcuit and Systems II. Exp. Briefs vol.58, no.7, pp 407-411, Jul., 2011.
    [22] D. A. Johns, and K. Martin, Analog Integrated Circuit Design. John Wiley & Sons, In, 1997.
    [23] B. Razavi, Data Converiosn System Design. IEEE Press, 1995.
    [24] J. McCreary, and P. Gray, “All-MOS Charge-Redistribution Analog-to-Digital Conversion Techniques I, ” IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
    [25] S. O'Driscoll, K. V.Shenoy, and T. H. Meng, “Adaptive Resolution ADC Array for an Implantable Neural Sensor, ” IEEE Trans. Biomed. Circuit Syst. vol.5, no.2, pp.120-130, April 2011.
    [26] B. Razavi, Design of Analog CMOS Integrated Circuits. 1st ed. New York, NY: Mcgraw-Hill, 2001.
    [27] A. Rossi, G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics Letters, Vol.32, no.12, pp.1055-1057, Jun. 1996.
    [28] R. K .Hester, K.-S. Tanm M. D. Wit, J. W. Fattaruso, S. Kiriaki, and J. R. Hellums, “Fully Differentail ADC with rail-to-rail common-mode range and non-linear capacitor compensation, ” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 173-183, Feb. 1990.
    [29] Y. S. Yee, L. M. Terman, L. G. Heller, “A Two-Stage Weighted Capacitor Network for D/A-A/D Conversion,” IEEE Journal of Solid-State Circuits, Vol.14, no.4, pp.778-781, Aug. 1979.
    [30] S.-K Lee, S-J Park, Y. Suh, H.-J. Park, and J.-Y. Sim,“ A 1.3□W 0.6V 8.7-ENOB successive approximation ADC in 0.18um CMOS, ” in VLSI Symp. Tech. Dig., Jun.2009,pp.242-243.
    [31] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, and R. P. Martins, “A voltage feedback charge compensation technique for split DAC architecture in SAR ADCs, ” in IEEE Int. Symposium on Circuits and Systems, May 2010, pp.4061-4064.
    [32] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M.Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC, ” in IEEE Custom Integrated Circuits Conference, Sept. 2009, pp. 279-282.
    [33] P.J.A. Harpe, C. Chou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, “A 26w 8 bit 10MS/S Asynchronous SAR ADC for Low Energy Radios,” IEEE Journal of Solid-State Circuits, vol. 46, NO. 7, pp. 1-11, Jul. 2011.
    [34] P. Harpe, C. Chou, X. Wang, G. Dolmans, and H. de Groot, “A 12fJ/Conversion-Step 8bit 10MS/S Asynchronous SAR ADC for Low Energy Radios,” in Proceedings of the ESSCIRC, , Sept. 2010, pp. 214-217.
    [35] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “ A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18□m CMOS,” in VLSI Symp. Tech. Dig., Jun.2010,pp.241-242.
    [36] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 34, no.5, pp. 599–606, May 1999.
    [37] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10-b 50-MS/s 820-□W SAR ADC With On-Chip Digital Calibration, ” IEEE Trans. Biomed. Circuit Syst. vol.4, no.6, pp.410-416, April 2010.
    [38] R. Sekimiti, A. Shikata, Tadahiro, and H.Ishikuro, “A 40-nm 50S/s-8MS/s Ultra Low Voltage SAR ADC with Timing Optimized Asynchronous Clock Generator,” in Proceedings of the ESSCIRC , Sept. 2011, pp. 471-474.
    [39] S. U. Ay, “A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis, ” IEEE Trans. Biomed. Circuit Syst. vol.5, no.6, pp.535-545, Dec. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE