簡易檢索 / 詳目顯示

研究生: 王榮崎
Wang, Jung-Chi
論文名稱: 具交錯式介面轉換器及多重儲能系統以風力開關式磁阻發電機為主之直流微電網
A WIND SWITCHED-RELUCTANCE GENERATOR BASED DC MICRO-GRID WITH INTERLEAVING INTERFACE CONVERTER AND MULTIPLE ENERGY STORAGE DEVICES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 陳盛基
謝欣然
李建興
廖聰明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 182
中文關鍵詞: 風力發電機開關式磁阻電機微電網儲能系統飛輪蓄電池介面轉換器交錯式負載變頻器強健控制換相移位
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發以風力開關式磁阻發電機為主之直流微電網,此微電網配具有三相負載變頻器及由蓄電池和飛輪所組成之混合式儲能系統。所建之風力開關式磁阻發電機,經由含兩單元之交錯式電流注入推挽直流-直流轉換器介接至微電網之共同直流匯流排,經由適當地電力電路設計、強健電壓及電流控制、電壓命令設定及換相移位,在變動之驅動轉速及負載下,所建發電機具調控良好之直流匯流排電壓。又由於交錯式操作特徵,可具有較小之直流輸出紋波及較高之可靠性。為從事微電網之性能實測評估,本論文設計製作一個三相負載變頻器,採d-q框下電流控制及零序控制信號注入機構,在未知及非線性負載下可得良好之交流輸出電壓波形及動態調節特性。
    另外,本論文建構一含飛輪及鉛酸蓄電池之混合式儲能系統,以提供直流微電網之儲能緩衝支撐。各儲能裝置經一雙向降/昇壓直流/直流介面轉換器介接至微電網之共通直流鏈。為了增強開關式磁阻馬達飛輪之放電特性,亦採行電壓命令自動修正、適當換相移位及控制器調適等策略。至於蓄電池儲能系統,透過適當之電力電路及控制器設計,可於放電模式下獲得良好之共通直流鏈電壓調控特性,並有良好之充電效能。所建微電網之各組成電力電路均以數位訊號處理器全數位化實現,並由實測結果驗證所建微電網之正常操作及控制性能。


    his thesis develops a wind switched-reluctance generator (SRG) based DC micro-grid, it is equipped with a three-phase load inverter and a hybrid energy storage system consisting of a lead-acid battery and a flywheel. The established SRG is interfaced to micro-grid common DC bus via an interleaving current-fed push-pull (CFPP) DC/DC converter formed using two cells. Well regulated DC bus voltage is obtained under varying shaft driving speeds and load levels through properly treating the key issues, such as power circuit design, robust voltage and current controls, voltage command setting and commutation shift, etc. Meanwhile, lower ripples and higher reliability are possessed thanks to the interleaving operation. To make experimental evaluation for micro-grid, a three-phase load inverter is designed and implemented. The current control scheme in d-q domain with zero sequence control signal injection is adopted. Good AC output voltage waveforms and dynamic regulation characteristics under unknown and nonlinear loads are obtained.
    A hybrid energy storage system consisting of a flywheel and a lead-acid battery bank is established to provide energy storage support for the proposed DC micro-grid. Each storage device is interfaced to the micro-grid DC bus via a bilateral buck/boost DC/DC converter. For enhancing the SRM flywheel discharging performance, automatically adapting the voltage command, proper commutation instant setting and controller tuning are also made under generating mode. As to the battery energy storage system, good common-bus DC voltage regulation in discharging mode and good charging performance are obtained by the proper designs of its circuit and controller. Digital signal processor (DSP) is used to realize the digital controls of all constituted power stages in the developed micro-grid. The operation characteristics and control performances of the whole micro-grid are evaluated experimentally.

    摘要 a 致謝 b 目錄 c 第一章、簡介 d 第二章、微電網和開關式磁阻電機之簡介 e 第三章、風力開關式磁阻發電機之建立 f 第四章、飛輪儲能系統 g 第五章、電池儲能系統 h 第六章、開關式磁阻發電機為主之直流微電網評估 i 第七章、結論 j 附錄: 英文論文 k

    A. Micro-Grid and Distributed Power Systems
    [1] Y. Ito, Y. Zhongqing and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE IPEMC, 2004, pp. 1740-1745.
    [2] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2004, pp. 1510-1515.
    [3] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [4] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON, 2007, pp. 635-642.
    [5] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
    [6] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp. 480-486.
    [7] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, 2010.
    [8] Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, 2010.
    [9] Díaz, C. González-Morán, J. Gómez-Aleixandre and A. Diez, “Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 489-496, 2010.
    [10] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
    [11] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
    [12] H. Kanchev, D. Lu and F. Colas, V. Lazarov and B. Francois, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4583-4592, 2011.
    [13] L. A. S. Ribeiro, O. R. Saavedra, S. L. Lima and J. G. Matos, “Isolated micro-grids with renewable hybrid generation: the case of lençóis island,” IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp.1-11, 2011.
    [14] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans. Power Del., vol. 26, no. 1, pp. 325-332, 2011.
    [15] S. W. Mohod and M. V. Aware “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
    [16] B. Wang, M. Sechilariu and F. Locment, “Intelligent DC microgrid with smart grid communications: control strategy consideration and design,” IEEE Trans. Smart Grid, vol.3, no. 4, pp. 2148-2156, 2012.
    [17] M. Baradar, M. Ghandhari, D. Van Hertm and A. Kargarian, “Power flow calculation of hybrid AC/DC power systems," in Proc. IEEE PESGM, 2012, pp.1-6.
    [18] R. Cardenas, M. Molinas and J. T. Bialasiewicz, “Introduction to the special section on control and grid integration of wind energy systems - Part II,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2774-2775, 2013.
    [19] H. Valderrama-Blavi, J.M. Bosque, F. Guinjoan, L. Marroyo and L. Martinez-Salamero, “Power adaptor device for domestic DC microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1191-1203, 2013.
    [20] M. A. Saleh and M. N. Eskander, “Performance of wind driven generators under wind speed variation and grid faults," in Proc. IEEE PEDS, 2013, pp. 957-961.
    B. Switched-Reluctance Machines
     Switched-Reluctance Motors and Their Converters
    [21] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
    [22] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE EMD Conf., 1997, pp. 361-365.
    [23] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
    [24] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [25] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
    [26] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [27] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
    [28] A. Chiba, M. Takeno and N. Hoshi, ‘‘Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2333-2340, 2012.
    [29] S. Smaka, S. Konjicija, S. Masic and M. Cosovic, “Multi-objective design optimization of 8/14 switched reluctance motor,” in Proc. IEEE IEMDC., 2013, pp. 468-475.
    [30] H. Arihara and K. Akatsu, “Basic properties of an axial-type switched reluctance motor,” in Proc. IEEE ICEMS., 2010, pp. 1687-1690.
    [31] T. Satou, S. Morimoto, M. Sanada and Y. Inoue, “A study on the rotor design of the synchronous reluctance motor for EV and HEV propulsion,” in Proc. IEEE PEDS, 2013, pp 1190-1194.
    [32] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
    [33] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [34] S. Baiming, S. M. Lukic and A. Emadi, “A digital current control for switched reluctance motor drives,” in Proc. IEEE ISIE, 2010, pp. 1163-1168.
    [35] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Applicat., vol. 148, no. 4. pp. 345-352, 2001.
    [36] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [37] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
    [38] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” Proc. IEE Power Electron. and Applicat., vol. 6, pp. 20-25, 1993.
    [39] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” Proc. IEE Elect. Power Applicat., vol. 146, no. 1, pp. 2-10, 1999.
    [40] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [41] K. I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [42] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
    [43] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
    [44] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, 2006.
    [45] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
    [46] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [47] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
    [48] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
    [49] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [50] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
    [51] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [52] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
    [53] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vo. 25, no. 5, pp. 1135-1148, 2010.
    [54] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
    [55] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
    [56] H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance motors using three-phase power modules,” in Proc. IEEE EPE/PEMC, 2006, pp. 1027-1031.
    [57] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
     Switched-Reluctance Generators
    [58] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47.
    [59] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
    [60] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, 2002.
    [61] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
    [62] P. Chancharoensook and M. F. Rahman, “Control of a four-phase switched reluctance generator: experimental investigations,” in Proc. IEEE IEMDC, 2003, vol. 2, pp. 842-848.
    [63] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
    [64] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
    [65] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.
    [66] P. Asadi, M. Ehsani and B. Fahimi, “Design and control characterization of switched reluctance generator for maximum output power,” in Proc. IEEE APEC, 2006, pp. 1639-1644.
    [67] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
    [68] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
    [69] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
    [70] W. Fernando, M. Barnes and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
    [71] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE PowerEng, 2011, pp. 1-6.
    [72] G.O. Suvire and P.E. Mercado, “Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications,” IET Gener. Transm. Distrib., vol. 6, no. 6, pp. 483-492, 2012.
    [73] G.O. Suvire, M.G. Molina and P.E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012.
    [74] R. Arghandeh, M. Pipattanasomporn and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
    [75] S. Sabihuddin, A. Kiprakis and M. Mueller, “A diamagnetically stabilized magnetically levitated flywheel battery,” in Proc. IEEE EVER., 2013, pp. 1-5.
    [76] C.S. Hearn, M.C. Lewis, S.B. Pratap, R.E. Hebner, F.M. Uriarte, C. Dongmei and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013.
    [77] M. El Mokadem, C. Nichita, P. Reghem and B. Dakyo, “Short term energy storage based on reluctance machine control for wind diesel system,” in Proc. IEEE EPE/PEMC, 2006, pp. 1585-1590.
    C. Energy Storage Systems and Flywheels
    [78] J.L. da Silva Neto, L. G. B. Rolim and G. G. Sotelo, “Control of a power circuit interface of a flywheel-based energy storage system,” in Proc. IEEE ISIE., 2003, vol. 2, pp. 962-967.
    [79] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497.
    [80] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
    [81] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
    [82] A. Rajapakshe, U. K. Madawala and D. Muthumani, “A model for a flywheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030.
    [83] J. Sun, Z. Kuang, S. Wang and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML., 2012, pp.1-6.
    D. Interface Power Electronic Converters
    [84] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
    [85] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [86] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
    [87] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621.
    [88] U. R. Prasanna and A. K. Rathore, “Analysis and design of interleaved current-fed phase-modulated single-phase unfolding inverter,” in Proc. IEEE IECON, 2012, pp. 3382-3387.
    [89] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
    [90] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [91] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
    [92] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
    [93] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
    [94] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
    [95] A. A. Fardoun, E. H. Ismail, A.J. Sabzali and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329.
    [96] L. Corradini, D. Seltzer, D. Bloomquist, R. Zane, D. Maksimovic and B. Jacobson, “Zero voltage switching technique for bi-directional DC/DC converters,” in Proc. IEEE ECCE, 2011, pp. 2215-2222.
    [97] H. R. Karshenas, H. Daneshpajooh, A. Safaee, A. Bakhshai and P. Jain, “Basic families of medium-power soft-switched isolated bidirectional DC/DC converters,” in Proc. IEEE PEDSTC, 2011, pp. 92-97.
    [98] S. Devikala and P. Nirmalkumar, “Experimental verification of soft switching push-pull DC to DC converter,” in Proc. IEEE PEDES, 2012, pp. 1-5.
    [99] S. Zhang, O. Thomsen and M. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional DC-DC converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2761-2771, 2012.
    E. PWM Inverters
    [100] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2001.
    [101] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
    [102] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
    [103] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
    [104] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
    [105] H. Deng, R. Oruganti and D. Srinivasan, “A simple control method for high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, 2008.
    [106] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [107] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2724-2733, 2008.
    [108] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
    [109] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
    [110] S. Dasgupta, S. N. Mohan, S. K. Sahoo and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp.316-321.
    [111] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [112] Y. W. Li, D. M. Vilathgamuwa and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
    [113] M. Saghaleini and B. Mirafzal, “Reactive power control in three-phase grid-connected current source boost inverter,” in Proc. IEEE APEC, 2012, vol. 1, pp. 904-910.
    [114] B. Sahan, S. V. Araujo, C. Noding and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
    [115] R. Carballo, R. Nunez, V. Kurtz and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
    [116] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
    [117] G. G. Pozzebon, A.F.Q. Goncalves, G. G. Pena, N. E. M. Mocambique and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
    F. Others
    [118] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2010.
    [119] Y. W. Lin, “Development of a home microgrid with multiple renewable sources and energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2010.
    [120] K.F. Chou, “A wind driven switched-reluctance generator based DC micro-grid supported by energy storages of battery and flywheel,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE