簡易檢索 / 詳目顯示

研究生: 莊惠淇
Huei-Chi Chung
論文名稱: 利用閘堆疊式介電層及界面工程加強金氧半元件電性之研究
Electrical characteristic enhancement of MOS device with gate stack dielectrics and interfacial layer engineering
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 124
中文關鍵詞: 高介電材料氮化介電層堆疊式介電層
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了改善電晶體的操作速度,VLSI製程技術多年來一直以元件微縮為目標,由於氧化層微縮至2.0nm以下所導致的嚴重漏電流問題已由相同電容下擁有高物理厚度之高介電材料成功解決了,但熱穩定性不佳、和矽基板間相容性、和閘極有Fermi-level pinning的高介電材料也面臨了一些挑戰,然而如何選擇高介電材料才能改善這些問題是現今大家所探討的重要課題。
    氮化界電層能夠阻擋外界來的雜質,改善元件電特性,已被許多學者研究討論,本論文中我們以電漿氮化方式(PIII)順利從閘極摻雜N於界電層中,發現調降離子能量能夠改善電漿對元件所帶來的傷害,並以摻雜前後XRD peak角度和閘極功函數(TaN~4.0eV)的變異度不大,驗證從閘極上方摻雜N是可行的方法。針對50nm的閘極厚度,以2.5keV的離子能量能夠使大部分N分佈於界電層上層,大大減少defect的產生,提升閘極/氧化層的barrier,擁有調降EOT至1.45nm、Jg降低3~4個order的能力。針對佈植時間而言,以15min最為恰當,能夠使界電層擁有足夠的N濃度阻擋外來的雜質,改善元件電特性。
    High-k 材料和矽基板間相容性的問題一直廣被研究,在本論文中第二部分,我們以low-k SiO2/ high-k TiN stack dielectric來探討,由SILC、stress induced Vfb shift和Dit都可明顯得知以SiO2為緩衝層可以減少和矽基板間不連續接面產生,大大改善元件的穩定性。當Ti含量降至4.45%以下,緩衝層厚度2.0nm時,可以抵擋大部分Ti往矽基板擴散,亦使Ti完全和界電層鍵結,擁有較佳元件電特性,減少高電場下由未完全鍵結之高極性Ti6+所導致的phonon-assisted current。然而在沉積完界電層後的退火活化以高溫PDA900℃擁有最佳的元件熱穩定性。
    本論文的第三部分延續第二部分元件為基本結構,進一步內嵌入AlN或以AlN取代緩衝層,目的在於期望AlN提供更大阻擋Ti往矽基板擴散的能力。針對0.5nm TiN/內嵌入AlN 0.5nm/1.0nm SiO2 stack成功得降低了Ti和矽基板的鍵結,改善了元件的穩定性。然而以AlN為緩衝層,從遲滯、Stress CV、Dit卻明顯觀察到有增加的趨勢,驗證了以矽化物為緩衝層對元件熱穩定的重要性。


    摘要 致謝 目錄 圖目錄 表目錄 第一章 導論……………………………………………1 1.1 前言………………………………………………………..1 1.2為何使用High-k介電層…………………………………..1 1.3 High-k材料所面臨的問題………………………………...2 1.4 最近廣為探討之high-k議題……………………………...3 1.4.1 縮小等效氧化物厚度、提高熱穩定性研究…………………4 1.4.2 改善High-K/Si界面之探討…………………………………..5 1.5論文架構……………………………………………………6 第二章 元件製程與量測……………………………..10 2.1 自閘極TaN氮化介電層HfO2之金氧半電容元件製作流程……………………………………………………………...10 2.2堆疊式介電層TiN/SiO2之金氧半電容元件製作流程……………………………………………………………..12 2.3堆疊式介電層TiN/AlN/SiO2和TiN/AlN之金氧半電容元件製作流程……………………………………………………...14 2.4金氧半電容電性量測…………………………………….16 2.4.1 電容-電壓 (C-V) 特性量測………………………………..17 2.4.2 電流-電壓 (I-V) 特性量測…………………………………17 2.4.3 遲滯 (Hysteresis) 特性量測………………………………..18 2.4.4 Stress-Induced Vfb shift (△Vfb) 特性量測………………..18 2.4.5 Stress-Induced Leakage Current (SILC) 特性量測……….18 2.4.6 萃取金屬閘極之功函數 (Work Function)…………………19 2.4.7 萃取界面捕獲電荷密度(Interfac Trap Density, Dit)………..19 2.5 金氧半電容物性與材料分析……………………………20 2.5.1 X射線光電子能譜儀 XPS………………………………….20 2.5.2 X光粉末繞射儀 (X-ray Powder Diffraction)……………….20 2.5.3 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)…………………………………………………………………...21 第三章 應用電漿離子佈植氮化介電層與元件特性研究………………………………………………………27 3.1研究動機…………………………………………………..27 3.2製程與量測………………………………………………..31 3.2.1製程條件……………………………………………………31 3.2.2量測參數…………………………………………………….32 3.3實驗結果與討論………………………………………….34 3.3.1不同離子佈植能量之物性分析……………………………..35 3.3.2不同離子佈植能量和時間對元件基本電特性之影響……..37 3.3.3不同離子佈植能量和時間對元件可靠度之影響…………..41 3.3.4漏電流導電機制探討………………………………………..43 3.4結論……………………………………………………….47 第四章SiO2/TiN堆疊式閘介電層Ti組成比及不同的PDA溫度退火對金氧半元件特性之研究…………...64 4.1研究動機…………………………………………………..64 4.2 製程與量測………………………………………………67 4.2.1 製程條件…………………………………………………….67 4.2.2 量測參數…………………………………………………….68 4.3 實驗結果與討論…………………………………………69 4.3.1不同Ti/Si組成比之介電層TiSiON比較…………………..70 4.3.2閘介電層沉積後不同PDA溫度處理之比較………………..73 4.3.3在不同電壓範圍內TixSiyOzN介電層之漏電機制..……….75 4.4結論………………………………………………………..79 第五章 閘極介電層內嵌入AlN於不同PDA溫度退火對金氧半元件特性之研究..…………………………..92 5.1 研究動機…………………………………………………92 5.1.1 內嵌入阻擋擴散層AlN……………………………………..92 5.1.2 以high-k材料為緩衝層(buffer layer)………………………94 5.2 製程與量測………………………………………………95 5.2.1 製程條件…………………………………………………….95 5.2.2 量測參數…………………………………………………….95 5.3 實驗結果與討論…………………………………………96 5.3.1不同堆疊結構之閘極介電層特性比較……………………..96 5.3.2不同PDA退火溫度之比較…………………………………100 5.3.3 TiN/AlN/SiO2 stack介電層漏電流機制…………………...103 5.4結論………………………………………………………106 第六章 結論與建議..………………………………..119 6.1結論………………………………………………………119 6.2建議………………………………………………………120 參考文獻……………………………………………..122

    [1] International Technology Roadmap for Semiconductors, 2003edition
    [2] J. H. Stathis et al, IEDM, San Francisco, 71, pp.167, 1998
    [3] A. I. Kingon, J. P.Maria, S. K. Streiffer, Nature 406, 1032
    [4] Tung Ming Pan, et al, APL vol. 78, p.1439
    [5] G. D. Wilk, R. M. Wallace, et al., J. Appl. Phys. 87, 484, 2000.
    [6] G. D. Wilk, et al., J. Appl. Phys. 89, 5243, 2001.
    [7] A. Kumar, D. Rajdev, et al., J. Am. Chem. Soc. 55, 439, 1972.
    [8] C. Hobbs, et al., IEEE IEDM. 2001, 30.1.1, 2001.
    [9] S. Saito, et al., p.7, IEDM, 2003
    [10] B. Cheng, et al., p. 1537, TED, 1999
    [11] Y.-C. Yeo, et al., p.7266, JAP, 2002
    [12] S. Chatterjee, Semicond. Sci. Technol. 17, p. 993–998, 2002
    [13] R. Cava, etal., APL, 70, p. 1396, 1997
    [14] R. J. Cava, J. J. Krajewski, JAP, 83, p. 1613, 1998
    [15] R. F. Cava, W. F. Peck Jr., et al., Nature 377, p.215, 1995
    [16] Y. Harada, et al., Symp. VLSI Tech. Dig. 3-3-1, 2002.
    [17] L. Kang, et al., IEEE IEDM. 2000, 35, 2000.
    [18] S. Gopalan, K. Onishi, et al., Appl. Phys. Lett. 80, p. 4416, 2002.
    [19] H. Y. Yu, et al., Appl. Phys. Lett. 81, 376, 2002.
    [20] W. Zhu, T. P. Ma, et al., IEEE IEDM. 2001, 20.4.1.
    [21] L. Manchanda, et al.,IEDM 98-605, 1998
    [22] Q. Fang, et al., Thin Solid Films 428, p.263, 2003
    [23] M. H. Zhang, et al., APL 87, p. 232901, 2005
    [24] H. Y. Yu, et al., Thin Solid Films 462-463, p.110, 2004
    [25] N. Lu, H. -J. Li, et al., IEEE EDL 26, No. 5, 2005
    [26] C. H. Choi, C. Y. Kang, et al., Symp. VLSI Tech. Dig., p.226, 2005
    [27] Kazuyoshi Torii, et al., IEEE EDL 53, p. 323, 2006
    [28] 張子云,”利用氟氮摻雜與低溫電漿處理在奈米金氧半電晶體元件製程上的應用”,國立交通大學電子工程系,2002
    [29] Satoshi Kamiyama, IWGI 2003, p. 46, Tokyo
    [30] H.-S. Jung, et al., IEDM Tech. Dig., 2002, pp. 852-856.
    [31] S. Tsujikawa, et al., IEEE Symp. VLSI Tech. Dig., 2002
    [32] C. H. Chen, et al., IEEE EDL 22, p.260, 2001
    [33] C Kang, et al., IEEE, p.122, 2005
    [34] 方銘顗,“利用不同界面處理以改善HfTaN閘電極金氧半電晶體之電特性”,國立清華大學工程與系統科學系,2006
    [35] M. S. Akbar, et al., APL 86, 032906 ,2005
    [36] Renee Nieh, et al., APL 81, p.1663, 2002
    [37] I. J. R. Baumvol, et al., APL 74, p.806, 1999
    [38] Takuya Seino, et al., APL 76, p. 342, 2000
    [39] S. Mandl, et al., J. Vac. Sci. Technol. B 14(4), p. 2701, 1996
    [40] H. Y. Kao, “閘極介電層HfON摻雜金屬(Ti/Ta/Al)及界面層金氧半元件之電性改善”,國立清華大學工程與系統科學系,2006
    [41] E.J. Jones et al, IEEE EDL-14, p.444, 1993
    [42] C. Yu et al, IEEE EDL-15, p.196, 1994.
    [43] S. Inaba et al, IEEE IEDM, p.651, 2002
    [44] J-G. Yun et al, IEEE EDL-26, p.90, 2005
    [45] H. Fujioka, et al., “QMCV simulator,” online available http://www-device.eecs.berkeley.edu/qmcv/index.shtml
    [46] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., John Wiley & Sons, New York, 1998
    [47] S. Zafar, et al., Apply Phys. Letter, vol. 80, pp. 4858-4860, 2002.
    [48] T.J. Watson, et al., IEEE IEDM98-167, 1998
    [49] Seokhoon Kim, et al., ECS 154(2), H97-H101, 2007
    [50] B. H. Lee, et al., IEDM 0039-0041 IEEE, 2000
    [51] S.M. Sze, Physics of Semiconductor Device (Wiley, 1981), p.402
    [52] M. T. Wang, et al., ECS, Vol. 152, No. 7, pp. G542-G544, 2005
    [53]C. L. Cheng, et al., IEEE TED 53, p.63, 2005
    [54] S. Banerjee, et al., J. Appl. Phys. 65, p.1140, 1989
    [55] M. T. Wang, et al., ECS 152(3), G182-G185, 2005
    [56] C. L. Cheng, et al., APL 86, 212902, 2005
    [57] Wen-Jie Qi, et al., VLSl Tech. Dig. of Tech., 2000
    [58] G. B. Rayner, et al., J. Vac. Sci. Technol. B 21, p.1783, 2003
    [59] D. K. Sarkar, et al., APL 80, p.294, 2002
    [60] Xuguang Wang, et al., IEEE TED 51, NO. 11, 2004
    [61] B. Cheng, et al., TED, p. 1537, 1999
    [62] G. Lupina, et al., APL vol. 87, p.92901, 2005
    [63] H. Watanabe, et al., APL vol. 85, p. 449, 2004
    [64] D. Brassard, et al., J. Vac. Sci. Technol. A 22(3), p. 851, 2004
    [65] C. L. Liu, et al., APL. Vol. 81, p. 1441, 2002
    [66] B. H. Lee, et al., IEDM Tech. Dig., p.39, 2000
    [67] R. Nieh, ey al., IWGI, p.70, 2001
    [68] D. Brassard, et al., JAP 98, 054912, 2005
    [69] A. Paskaleva, et al., JAP 95, 5583, 2004
    [70] D. Brassard, et al., J. Vac. Sci. Technol. A 24(3), p.600, 2006
    [71] A. Nishyama, et al., Mater. Res. Soc. Sym. Proc. 670, K4.8.1, 2001
    [72] R. C. Smoith, N. Hoilien, et al., Chem. Vap. Deposition 9, p.79, 2003
    [73] Heiji Watanabe, et al., APL 85, p.449, 2004
    [74] Vincent S. Chang et al., IEEE, p.130, 2003
    [75] J.H. Stathis, et al., IEDM 98, p.167, 1998
    [76] Paul E. Nicollian, et al., in IRPS, p.400-404, 1999
    [77] W. K. Chim, T. H. Ng and B. H.Koh, et al, JAP 93, p.4788, 2003
    [78] M. V. Fischetti, D.A. Neumayer, et al, JAP. 90, p.4587, 2001
    [79] G. A. Niklasson and K. Brantervik, JAP. 59, p.980, 1986
    [80] H. Y. Yu, et al., APL 81, p.3618, 2002
    [81] Jaehyun Kim and Kijung Yung, ECS, 152 (10) F153-155, 2005
    [82] V. Cosnier, H. Bender, et al., IWGI , Tokyo, p226, 2001
    [83] Yan Ny Tan, et al., IEEE TED 53, p.654, 2006
    [84] S. Takagi, et al., IEDM Tech. Dig., pp.323-326, 1996
    [85] M. S. Akbar, et al., IEEE Elec. Dev. Lett., vol.25, no.7, 2004
    [86] V. Mikhelashvili, e al., IEEE EDL 27, p.344, 2006
    [87] Kyushik Hong, et al., IEEE TED 41, p.1489, 1994
    [88] Szu-Wei Huang, et al., IEEE TED 51, p.1877, 2004
    [89] M. Atps, et al., J. Vac. Sci. Technol. A 15(4), p.1864, 1997
    [90] Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology, Prentice- Hall, 2001
    [91] J. F. Ziegler, Handbook of Ion Implantation Technology, Elsevier Science Publisher, 1992

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE