研究生: |
林家平 |
---|---|
論文名稱: |
使用Mach-Zehnder 干涉儀以及腔損控制達成摻鉺光纖雷射波長切換之研究 Wavelength Switching of Erbium-Doped Fiber Laser by Using Mach-Zehnder Interferometer and Cavity Loss Control |
指導教授: | 王立康 |
口試委員: |
呂海涵
林恭如 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | Mach-Zehnder 干涉儀 、摻鉺光纖雷射 、波長切換 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所要呈現的是利用薄膜濾波器(thin film filter)與Mach-Zehnder 干涉儀(interferometer)的配合,達到可調式輸出雷射波長。在光源方面,是藉由摻鉺光纖方大器(Erbium-doped fiber amplifier)中的放大自發性福射(amplified spontaneous emission) 寬頻光源,接著以單模光纖(single mode fiber)與光纖迴圈反射鏡(fiber loop mirror)所構成的共振腔。在輸出波長方面,是使用薄膜濾波器來做為選擇輸出的雷射波長,藉由在光路中加上四個薄膜濾波器串接在一起,使四個特定波長藉由光纖迴圈反射鏡反射回到系統。利用兩個3db coupler 所致做出來的Mach-Zehnder 干涉儀機構,產生兩道頻譜圖形狀為弦波(sinusoidal waves)的圖形,其中兩道光相互有180°的相位差(phase difference),接著打入兩兩串連的薄膜濾波器,再經過薄膜濾波器的drop-port進入光纖迴圈反射鏡走一圈後繞回來,回到分波多工器(wavelength-division multiplexing)的另一端也是一個光纖迴圈反射鏡而形成共振腔。若要產生wavelength-tunable是藉由Mach-Zehnder 干涉儀上的位移產生器(shifter)對兩光路產生不同的光程差造成頻譜會產生向右飄移,而可以選擇上部分光路或是下部分光路產生光輸出,與bending裝置的配合,bending裝置則是選擇是從否讓後半部薄膜濾波器產生光雷射,因此可以分別讓四種波長輸出。
[1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” PROC. IEE, vol. 113, no. 7, pp. 1151-1158, 1966
[2] C.A. bracket, “.Dense wavelength division multiplexing networks : principles and applications” IEEE J. Select. Areas Comrnun. vol. 8, no. 6, pp. 948-964, 1990.
[3] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” Journal of lightwave technology, vol. 15, no. 8, pp. 1442-1463, 1997
[4] H. L. An , X. Z. Lin, E. Y. B. Pun, H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Optics Communications, vol. 169, pp. 159-165, 1999.
[5] A. Luo, Z. Luo, W. Xu, “Multiwavelength switchable erbium-doped fiber ring laser with a PBS-based Mach–Zehnder comb filter,” IEEE Photon. J., vol. 3, no. 2, pp. 197–220, 2011.
[6] A. Sulaiman, S. W. Harun, H. Arof, and H. Ahmad, “Compact and tunable erbium-doped fiber laser with microfiber Mach–Zehnder interferometer,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1165–1168, 2012.
[7] X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express, vol. 13, no. 1, pp. 142-147, 2005.
[8] S. Li and K. T. Chan, “A Novel Configuration for Multiwavelength Actively Mode-Locked Fiber Lasers Using Cascaded Fiber Bragg Gratings, ” IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 179-181, 1999.
[9] J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett., vol. 8, no 1, pp. 60-62, 1996.
[10] P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry–Pérot laser diode,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 661-663, 2003.
[11] D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B, vol 81, pp. 807–811, 2005.
[12] C.-H. Yeh, F.-Y. Shih, C.-T. Chen, C.-N. Lee, and S. Chi, “Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode,” Laser Phys. Lett., vol. 5, no. 3, pp. 210–212 2008.
[13] X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon,” IEEE Photon. Technol. Lett., vol. 20, no. 12, pp. 976-978, 2008.
[14] H. Zou, S. Lou, and G. Yin, “A wavelength-tunable fiber laser based on a twin-core fiber comb filter,” Optics & Laser Technology, vol. 45, pp. 629–633, 2013.
[15] L. Domash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and Switchable Multiple-Cavity Thin Film Filters,” Journal of lightwave technology, vol. 22, no. 1, pp. 126-135, 2004.
[16] D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne, “Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 pm Optical Fibre Amplifiers,” IEEE Photon. Technol. Lett., vol. 6, no. 5, pp. 609-612, 1994.
[17] H. Po, J. D. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, and Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electronics letters, vol 29, no. 17, pp. 1500-1501, 1993.
[18] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817-1830, 1994.
[19] C. R. Giles, and E. Desurvire, “Modeling erbium-doped fiber amplifiers, ” Journal of lightwave technology, vol. 9. no. 2 .pp. 271-283, 1991.
[20] B. E. A. Saleh and M. C. Teich, Fundamentals of photnics, Wiely interscience, 2007.
[21] R. Syms and J. Cozens, Optical guided waves and devices, McGRAW-HILL book company, 1992.