簡易檢索 / 詳目顯示

研究生: 黃超賢
Huang, Chao-Hsien
論文名稱: 腦波應用於內在認知負荷之探究:以數學代數一元一次方程式與二元一次聯立方程式唯一解運算為例
A Study on the Application of Brainwaves to Intrinsic Cognitive Load: Take the Unique Solution Operation of One-Time Linear Equation and Two-Time Linear Simultaneous Equation in Mathematical Algebra as an Example
指導教授: 王子華
Wang, Tzu-Hua
口試委員: 王昭智
Wang, Chao-Chih
陳湘淳
Chen, Hsiang-Chun
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 教育與學習科技學系
Education and Learning Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 內在認知負荷腦波事件相關電位洞察力數學代數
外文關鍵詞: Intrinsic Cognitive Load, EEG, ERP, Insight, Mathematical Algebra
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用事件相關電位技術,以內在認知負荷觀點,探討「數學代數一元一次方程式與二元一次聯立方程式唯一解」題型之不同解題步驟數,對正確率和反應時間之影響。其中,「數學代數一元一次方程式與二元一次聯立方程式唯一解」題型難易程度依照步驟數劃分為「容易」、「中等」及「困難」三種類型。
    本研究採實驗研究法,研究刺激素材內容為國小、國中洞察力之代數解題型,所使用的素材依認知負荷理論的教材設計原則進行設計,特別以數學洞察力題解範例為編排原則。研究對象為臺灣58名20至30歲之青年,將其隨機配置為「實驗一:臺灣青年數學思考實驗」與「實驗二:臺灣青年數學思考腦波實驗」,分別讓40名青年進行數學代數題型行為實驗,另外18名進行數學代數腦波實驗,實驗一全部收案完成後才繼續進行實驗二。研究工具包含數學代數Eprime電腦化測驗、Curry8腦波系統、64 channel腦波帽及認知負荷量表。
      研究結果為:(1)正確率會隨著「解題步驟數」變多而遞減,反應時間會隨著「解題步驟數」變多而增加。(2)高分組的整體正確率顯著優於低分組 (p<0.001)。(3)女性整體正確率與男性無異 (p=0.253),而女性整體答題反應時間顯著高於男性 (p=0.005)。(4)整體認知負荷與正確率無顯著相關 (R=0.048),而低分組在認知負荷觀點花費心力面向與正確率具有顯著正相關 (R=0.498*)。(5)「整體腦波」(N=18)中,以「S1:內容敘述」為起點,我們發現PO3、PO4、PO7、PO8電極位置出現頻繁之活動,於200毫秒前後,出現顯著N2波,且PO4處之N2波振幅:「困難」大於「中等」(p=0.003);PO8處之N2波振幅:「困難」大於「中等」 (p=0.004)。另外,於500-900毫秒出現緩慢爬升的負慢波,可能涉及了洞察力與內在認知負荷之影響。(6)「整體腦波」(N=18)中,以「S1:內容敘述」為起點,在「困難」題型中,PO4處之N2波振幅:「正確反應」大於「不正確反應」(p=0.018)。(7)「高分組腦波」(N=9)中,以「S1:內容敘述」為起點,左後側PO3、PO7電極處,在不同難易度下N2波振幅出現差異,且PO3處之N2波振幅:「困難」大於「中等」(p=0.038);PO7處之N2波振幅:「中等」大於「簡單」(p=0.042)。(8)「低分組腦波」(N=9)中,以「S1:內容敘述」為起點,我們發現右後側PO4、PO8電極處,在不同難易度下N2波振幅出現差異,且PO4處之N2波振幅:「困難」大於「中等」(p=0.009);PO8處之N2波振幅:「困難」大於「中等」(p=0.046)。(9) 比較「高分組腦波」(N=9)與「低分組腦波」(N=9)之差異。在「容易」題型中,PO3處之N2波振福:「低分組」大於「高分組」(p=0.018);PO7處之N2波振福:「低分組」大於「高分組」(p=0.034);PO8之N2波振福:「低分組」大於「高分組」(p=0.052)。
    綜觀上述,提出以下幾點結論:(1)「解題步驟數」會影響題目之難易度,是影響內在認知負荷之重要因素。(2)「解題步驟數」越多,內在認知負荷將會越高。(3)頂枕葉之N2波與負慢波可能會是觀察內在認知負荷之關鍵因素。


    In this study, using the Electroencephalograph (EEG) and Event-Related Potential (ERP) technologies, and the Intrinsic Cognitive Load point, we explored the number of different problem-solving steps for the "Mathematical Algebra One-Way Equation and Two-Way Simultaneous Equations Unique Solution" problem type Impact on accuracy and response time. Among them, the degree of difficulty of the "one-time linear equations and two-time linear equations of mathematical algebra unique solution" problem type is divided into three types of "easy", "medium", and "difficult" according to the number of steps.
    The materials used are designed according to Cognitive Load Theory, and the examples of mathematical insight problem solving are used as design principles. The research subjects were 58 young people aged 20 to 30 in Hsinchu, Taiwan. They were randomly assigned as "Experiment 1: Experiments on Mathematical Thinking of Taiwan Youths" and "Experiment 2: Experiments on Mathematical Thinking of Taiwan Youths Brainwaves." Experiment 1 were conducted by 40 young people, and Experiment 2 were conducted by the other 18 young people. The research tools include Epime computerized test, Curry8 system, a 64-channel electrode cap, and a cognitive load scale.
    The results are as follows: (1) The accuracy decreases as the number of "Steps" increases, and the response time increases as the number of "Steps" increases. (2) The accuracy of the high group is significantly higher than the low group (p <0.001). (3) The accuracy of women is no different from men’s (p = 0.253), but the response time of women is significantly higher than men’s (p = 0.005). (4) There’s no correlation between the cognitive load and the accuracy (R = 0.048), but the low group has a positive correlation with the accuracy (R = 0.498*). (5) Frequent activities at PO3, PO4, PO7, and PO8 have a significant N2 wave appeared around 200 ms. , and the amplitude of N2 wave at PO4: "Difficult" is larger than "Medium" (p = 0.003); the amplitude of N2 wave at PO8: "Difficult" is larger than "Medium" (p = 0.004). In addition, the negative slow wave (NSW) slowly climbs at 500-900 ms accuracy may involve influence of insight and Intrinsic Cognitive Load. (6) In "Whole Brainwaves" (N = 18), starting with "S1: Content Description", in the "Difficult" question type, the amplitude of the N2W at PO4: "Correct response" is larger than "Incorrect response" (p = 0.018). (7) In "High-Group Brainwaves" (N = 9), starting from "S1: Content Description", the PO2 and PO7 electrodes on the left rear side have different N2W amplitudes at different difficulty levels, and the PO3 N2W amplitude: "Difficult" is larger than "Medium" (p = 0.038); N2W amplitude at PO7: "Medium" is larger than "Easy" (p = 0.042). (8) In the "Low-Group Brainwaves" (N = 9), starting with "S1: Content Description", at the PO4 and PO8 electrodes on the right rear side, the amplitude of the N2W differed at different levels, and PO4 The amplitude of the N2W at "Difficult" is larger than "Medium" (p = 0.009); the amplitude of the N2W at PO8: "Difficult" is larger than "Medium" (p = 0.046). (9) Compare the difference between "High-Group Brainwaves" (N = 9) and "Low-Group Brainwaves" (N = 9). In "Easy" question form, the N2W vibration at PO3: "Low-Group" is larger than the "High-group" (p = 0.018); the N2W vibration at PO7: "Low-Group" is larger than the "High-group" (p = 0.034); N2W Zhenfu of PO8: "Low-Group" is larger than "High-group" (p = 0.052).
    Overall, we list three conclusions: (1) "Steps" affects the difficulty of the problem and Internal Cognitive Load. (2) The more "Steps", the higher Internal Cognitive Load. (3) N2W and NSW of the parietal occipital lobe may be the key factors affecting Intrinsic Cognitive Load.

    第一章 緒論 第一節 研究動機.....2 第二節 研究目的.....3 第三節 研究問題.....4 第二章 文獻探討 第一節 認知負荷定義與重要性.....5 第二節 認知負荷的種類.....6 第三節 認知負荷的測量.....7 第四節 數學洞察力.....9 第五節 數學代數「一元一次方程式與二元一次聯立方程式唯一解」 運算編排.....12 第六節 Eprime電腦化行為測驗.....16 第七節 腦神經生理影像測量.....17 第八節 事件相關電位與技術.....21 第三章 研究設計與方法 第一節 研究方法.....24 第二節 研究流程.....27 第四章 研究結果 第一節 研究樣本特性.....33 第二節 難度指標.....33 第三節 行為實驗研究結果.....34 第四節 腦波實驗研究結果.....48 第五節 內在認知負荷與正確率和反應時間之相關因素.....65 第五章 討論與限制 第一節 行為研究討論.....68 第二節 腦波研究討論.....70 第三節 研究限制.....71 第六章 結論與建議 第一節 結論.....72 第二節 建議.....73 附錄 附錄一、國立清華大學研究倫理審查委員會審查核可證明.....79 附錄二、臺灣青年數學思考實驗研究參與者知情同意書.....80 附錄三、臺灣青年數學思考腦波實驗研究參與者知情同意書.....83 附錄四、臺灣青年數學思考問卷調查.....86 附錄五、數學思考實驗認知負荷表.....87 附錄六、數學思考腦波實驗認知負荷表.....88 附錄七、各類難易度題型詳盡解題步驟.....89 附錄八、腦波實驗小叮嚀.....93 圖目錄 圖2-3-1 認知負荷總量反應圖.....8 圖2-4-1 洞察力與學習力實驗設計流程圖.....10 圖2-7-1 程式語言與數學邏輯fMRI功能性磁振造影圖.....18 圖2-7-2 國際10-20腦波系統圖.....19 圖2-7-3 64 channel位置分佈圖.....19 圖2-7-4 負荷在各腦區之活躍狀態圖.....20 圖2-8-1 認知容量ERP狀態圖.....23 圖3-1-1 臺灣青年數學思考腦波實驗流程圖.....25 圖3-2-1 本研究流程圖.....27 圖3-2-2 64 channel電極帽打膠示意圖.....31 圖3-2-3 臺灣青年數學思考腦波實驗環境圖.....31 圖4-3-1 各難易度正確率長條圖.....35 圖4-3-2 各難易度反應時間長條圖.....35 圖4-3-3 各難易度之正確反應下反應時間長條圖.....36 圖4-3-4 各難易度之正確率與正確反應下反應時間之比率長條圖.....36 圖4-3-5 各難易度正確率之性別長條圖.....38 圖4-3-6 各難易度反應時間之性別長條圖.....38 圖4-3-7 各難易度正確率之組別長條圖.....42 圖4-3-8 各難易度反應時間之組別長條圖.....42 圖4-3-9 數學思考腦波實驗解題步驟數與正確率關係圖.....46 圖4-3-10 數學思考腦波實驗解題步驟數與反應時間關係圖.....47 圖4-4-1 S1容易、中等、困難腦電位熱區圖.....48 圖4-4-2 S2容易、中等、困難腦電位熱區圖.....49 圖4-4-3 S2容易、中等、困難腦電位熱區圖.....50 圖4-4-4 PO3電極處S1容易、中等、困難之腦波圖.....52 圖4-4-5 PO4電極處S1容易、中等、困難之腦波圖.....52 圖4-4-6 PO7電極處S1容易、中等、困難之腦波圖.....54 圖4-4-7 PO8電極處S1容易、中等、困難之腦波圖.....54 圖4-4-8 S1中等正確、中等不正確、困難正確、困難不正確腦電位熱區圖.....55 圖4-4-9 PO3電極處S1中等正確、中等不正確、困難正確、困難不正確之腦波圖.....57 圖4-4-10 PO4電極處S1中等正確、中等不正確、困難正確、困難不正確之腦波圖.....57 圖4-4-11 PO7電極處S1中等正確、中等不正確、困難正確、困難不正確之腦波圖.....59 圖4-4-12 PO8電極處S1中等正確、中等不正確、困難正確、困難不正確之腦波圖.....59 圖4-4-13 S1高、低分組於容易、中等、困難之腦電位熱區圖.....60 圖4-4-14 PO3電極處S1高、低分組於容易、中等、困難之腦波圖.....62 圖4-4-15 PO4電極處S1高、低分組於容易、中等、困難之腦波圖.....62 圖4-4-16 PO7電極處S1高、低分組於容易、中等、困難之腦波圖.....64 圖4-4-17 PO8電極處S1高、低分組於容易、中等、困難之腦波圖.....64 表目錄 表2-4-1 洞察力測驗題型任務表.....11 表2-5-1 二元一次方程式係數分類表.....12 表2-5-2 二元一次聯立方程式組合表.....13 表2-5-3 二元一次聯立方程式題型分類與解題步驟數關係表.....14 表2-8-1 智力力因素對洞察力影響500-900 ms腦區變化表.....22 表3-2-1 臺灣青年數學思考實驗刺激材料編排表.....28 表3-2-2 臺灣青年數學思考腦波實驗刺激材料編排表.....29 表3-3-1 ERPLAB分析流程表.....33 表4-2-1 各解題步驟數之難度分析表.....33 表4-3-1整體各難易度間正確率與反應時間:相依樣本T檢定表.....37 表4-3-2 性別於各難易度與正確率及反應時間比較表.....39 表4-3-3性別於各難易度間正確率與反應時間:相依樣本T檢定表.....41 表4-3-4組別於各難易度與正確率及反應時間比較表.....43 表4-3-5 組別於各難易度間正確率及反應時間關係表.....45 表4-4-1 S1階段於PO3、PO4電極處容易、中等、困難之N2波峰值表.....51 表4-4-2 S1階段於PO3、PO4電極處之N2波峰值T檢定表.....51 表4-4-3 S1階段於PO7、PO8電極處容易、中等、困難之N2波峰值表.....53 表4-4-4 S1階段於PO7、PO8電極處之N2波峰值T檢定表.....53 表4-4-5 S1階段於PO3、PO4電極處受試者回答正確與不正確情況下中等、困難之N2波峰值表.....56 表4-4-6 S1段於PO3、PO4電極處受試者回答正確與不正確情況下中等、困難之N2波峰值T檢定表.....56 表4-4-7 S1階段於PO7、PO8電極處受試者回答正確與不正確情況下中等、困難之N2波峰值表.....58 表4-4-8 S1階段於PO7、PO8電極處受試者回答正確與不正確情況下中等、困難之N2波峰值T檢定表.....58 表4-4-9 S1階段高、低分組於PO3、PO4電極處容易、中等、困難之N2波峰值表.....61 表4-4-10 S1階段高、低分組於PO3、PO4電極處之N2波峰值T檢定表.....61 表4-4-11 S1階段高、低分組於PO7、PO8電極處容易、中等、困難之N2波峰值表.....63 表4-4-12 S1階段高、低分組於PO7、PO8電極處之N2波峰值T檢定表.....63 表4-5-1 整體行為反應與認知負荷相關總表.....65 表4-5-2 高分組行為反應與認知負荷相關表.....65 表4-5-3 低分組行為反應與認知負荷相關表.....66

    Abramov, D. M., Pontes, M., Pontes, A. T., Mourao-Junior, C. A., Vieira, J., Cunha, C. Q., ... & Lazarev, V. V. (2017). Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test. Neuroscience letters, 647, 91-96.
    Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. A., & Silva, C. T. (2011, June). A user study of visualization effectiveness using EEG and cognitive load. In Computer graphics forum (Vol. 30, No. 3, pp. 791-800). Oxford, UK: Blackwell Publishing Ltd.Banerjee, R., Ghose, A., Choudhury, A. D., Sinha, A., & Pal, A. (2015, April). Noise cleaning and Gaussian modeling of smart phone photoplethysmogram to improve blood pressure estimation. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 967-971). IEEE.
    Anderson, J. A., Lewis, J. L., Saylor, O. D., Yu, Z., & Lu, M. (2001). Discrete mathematics with combinatorics. Upper Saddle River: Prentice Hall.Bähner, F., Demanuele, C., Schweiger, J., Gerchen, M. F., Zamoscik, V., Ueltzhöffer, K., ... & Tost, H. (2015). Hippocampal–dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: A Human Translational Imaging Study. Neuropsychopharmacology, 40(7), 1674.
    Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382–2393.
    Dan, A., & Reiner, M. (2017). Real time EEG based measurements of cognitive load indicates mental states during learning. J. Educ. Data Mining, 9, 31-44.
    Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219-250.
    Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological bulletin, 136(5), 822.
    Eysenck, M. W., & Keane, M. T. (2005). Cognitive psychology: A student's handbook. Taylor & Francis.
    Friedrich, R., & Friederici, A. D. (2009). Mathematical logic in the human brain: syntax. PloS one, 4(5).
    Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol., 10, 370-375.
    Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS biology, 2(4).
    Kaan, E. (2007). Event-related potentials and language processing: A brief overview. Language and Linguistics Compass, 1(6), 571–591.
    Kelly, A. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089–1102.
    Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research, 22(3), 397-405.
    Krutetskii, V. A., WIRSZUP, I., & Kilpatrick, J. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press.
    Lee, K., Yeong, S. H., Ng, S. F., Venkatraman, V., Graham, S., & Chee, M. W. (2010). Computing solutions to algebraic problems using a symbolic versus a schematic strategy. ZDM - The International Journal on Mathematics Education, 42(6), 591–605.
    Leikin, R., Leikin, M., Waisman, I., & Shaul, S. (2013). Effect of the presence of external representations on accuracy and reaction time in solving mathematical double-choice problems by students of different levels of instruction. International Journal of Science and Mathematics Education, 11(5), 1049-1066.
    Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM, 48(3), 305-319.
    Leikin, R., Leikin, M., Paz-Baruch, N., Waisman, I., & Lev, M. (2017). On the four types of characteristics of super mathematically gifted students. High Ability Studies, 28(1), 107-125.
    Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213.
    Luo, W., Liu, D., He, W., Tao, W., & Luo, Y. (2009). Dissociated brain potentials for two calculation strategies. NeuroReport, 20(4), 360–364.
    MacWhinney, B., James, J. S., Schunn, C., Li, P., & Schneider, W. (2001). STEP—A system for teaching experimental psychology using E-Prime. Behavior Research Methods, Instruments, & Computers, 33(2), 287-296.Mehta, R., Kabrawala, M., Nandwani, S., Desai, P., Bhayani, V., Patel, S., & Parekh, V. (2018). Safety and efficacy of sofosbuvir and daclatasvir for hepatitis C virus infection in patients with β-thalassemia major. Journal of clinical and experimental hepatology, 8(1), 3-6.
    Martín‐Loeches, M., Casado, P., Gonzalo, R., De Heras, L., & Fernández‐Frías, C. (2006). Brain potentials to mathematical syntax problems. Psychophysiology, 43(6), 579-591.
    Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & cognition, 15(3), 238-246.
    Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004-1023.
    Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5(2), 235-253.
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434. https://doi.org/10.1037/0022-0663.84.4.429
    Paas, F., & Ayres, P. (2014). Cognitive load theory: A broader view on the role of memory in learning and education. Educational Psychology Review, 26(2), 191-195.
    Paas, F., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6, 351–371. doi:10.1007/bf02213420.
    Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In B. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition (pp. 41–82). New York: Wiley.
    Polya, G. (2004). How to solve it: A new aspect of mathematical method (Vol. 85). Princeton university press.
    Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience & Biobehavioral Reviews, 36(1), 479-501.
    Roland, P. E., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53(5), 1219-1243.
    Sammer, G., Blecker, C., Gebhardt, H., Bischoff, M., Stark, R., Morgen, K., & Vaitl, D. (2007). Relationship between regional hemodynamic activity and simultaneously recorded EEG‐theta associated with mental arithmetic‐induced workload. Human brain mapping, 28(8), 793-803.
    Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime reference guide. Psychology Software Tools, Incorporated.
    Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). New York: MacMillan. Stavy, R. & Babai, R. (2008). Complexity of shapes and quantitative reasoning in geometry. Mind, Brain, and Education, 2, 170–176.
    Silver, E. A. (Ed.). (2003). Teaching and learning mathematical problem solving: Multiple research perspectives. New York: Routladge.Sternberg, S. (1969). Memory scanning: Mental processes revealed by reaction time experiments. American Scientist, 57, 421–457.
    Si, J., Xu, Y., Feng, H., Xu, X., & Zhou, C. (2014). Differences of arithmetic strategy use in adults with different math anxieties: An ERP study. Acta Psychologica Sinica, 46(12), 1835-1849.
    Spencer, K. M., Abad, E. V., & Donchin, E. (2000). On the search for the neurophysiological manifestation of recollective experience. Psychophysiology, 37(4), 494-506.
    Stavy, R., & Babai, R. (2008). Complexity of shapes and quantitative reasoning in geometry. Mind, Brain, and Education, 2(4), 170-176.
    Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American scientist, 57(4), 421-457.
    Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional science, 32(1-2), 9-31.
    Sweller, J. (2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educational Psychology Review, 22(2), 123-138. doi:10.1007/s10648-010-9128-5
    Sweller, J., & Chandler, P. (1994). Whysome material is difficult to learn. Cognition and Instruction, 12(3), 185–233.
    Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Pr.
    Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500.
    Võ, M. L. H., & Wolfe, J. M. (2013). Differential electrophysiological signatures of semantic and syntactic scene processing. Psychological science, 24(9), 1816-1823.
    Weisberg, R. W. (2015). Toward an integrated theory of insight in problem solving. Thinking & Reasoning, 21(1), 5-39.
    Witzel, B. S. (2005). Using CRA to teach algebra to students with math difficulties in inclusive settings. Learning Disabilities: A Contemporary Journal, 3(2), 49-60.
    Wirth, J., Künsting, J., & Leutner, D. (2009). The impact of goal specificity and goal type on learning outcome and cognitive load. Computers in Human Behavior, 25(2), 299-305.
    Wu, H. M., Huang, H. C., & Lin, C. J. (2018). Effects of different adaptive methods on math achievement, cognitive load and time allocation in an example-based learning system. ICMI-EARCOME8, 436.
    Young, J. Q., Irby, D. M., Barilla-LaBarca, M. L., ten Cate, O., & O’Sullivan, P. S. (2016). Measuring cognitive load: mixed results from a handover simulation for medical students. Perspectives on medical education, 5(1), 24-32.
    凃金堂、吳明隆 (2011)。運用「範例 (Worked-Out Example)」在國小數學問題解決的教學實驗研究。國立臺灣師範大學教育心理與輔導學系。教育心理學報,43(1),25-50。
    柯華葳 (2005)。數學學習障礙學生的診斷與確認。特殊教育研究學刊。.
    許文清、吳慧敏、譚寧君、楊凱翔 (2013)。工作範例之教學順序對學生學習成效與認知負荷影響之研究--以面積覆蓋活動為例。科學教育月刊。
    魏景漢 (2010)。事件相關電位原理與技術。生物技術通報,6,P.250-250。

    QR CODE